Back to ChemicalBook Home--->CAS DataBase List--->141-78-6


141-78-6 Structure

141-78-6 Structure

Ethyl acetate


AKOS BBS-00004223

[Molecular Formula]

[MDL Number]

[Molecular Weight]

[MOL File]

Chemical PropertiesBack Directory

Colorless liquid

Ethyl acetate is a colorless liquid. Pleasant, fruity odor.

[Melting point ]

−84 °C(lit.)
[mp ]

−84 °C(lit.)
[Boiling point ]

76.5-77.5 °C(lit.)
[bp ]

76.5-77.5 °C(lit.)
[density ]

0.902 g/mL at 25 °C(lit.)
[vapor density ]

3 (20 °C, vs air)
[vapor pressure ]

73 mm Hg ( 20 °C)

[refractive index ]

n20/D 1.3720(lit.)
[Fp ]

26 °F
[storage temp. ]

[solubility ]

Miscible with ethanol, acetone, diethyl ether and benzene.

16-18(at 25℃)
[form ]

[Specific Gravity]

0.902 (20/20℃)
[color ]

APHA: ≤10

Pleasant fruity odor detectable at 7 to 50 ppm (mean = 18 ppm)

Stable. Incompatible with various plastics, strong oxidizing agents. Highly flammable. Vapour/air mixtures explosive. May be moisture sensitive.
[Relative polarity]

[Odor Threshold]

[explosive limit]

2.2-11.5%, 38°F
[Water Solubility ]

80 g/L (20 ºC)

λ: 256 nm Amax: ≤1.00
λ: 275 nm Amax: ≤0.05
λ: 300 nm Amax: ≤0.03
λ: 325-400 nm Amax: ≤0.005
[Detection Methods]

[Merck ]

[JECFA Number]

[BRN ]

[Henry's Law Constant]

0.39 at 5.00 °C, 0.58 at 10.00 °C, 0.85 at 15.00 °C, 1.17 at 20.00 °C, 1.58 at 25.00 °C (column stripping-UV, Kutsuna et al., 2005)
[Exposure limits]

TLV-TWA 400 ppm (~1400 mg/m3) (ACGIH, MSHA, and OSHA); IDLH 10,000 ppm (NIOSH).

[CAS DataBase Reference]

141-78-6(CAS DataBase Reference)
[NIST Chemistry Reference]

Ethyl acetate(141-78-6)
[Storage Precautions]

Moisture sensitive
[EPA Substance Registry System]

141-78-6(EPA Substance)
Safety DataBack Directory
[Hazard Codes ]

[Risk Statements ]

R11:Highly Flammable.
R36:Irritating to the eyes.
R66:Repeated exposure may cause skin dryness or cracking.
R67:Vapors may cause drowsiness and dizziness.
R20/21/22:Harmful by inhalation, in contact with skin and if swallowed .
R39/23/24/25:Toxic: danger of very serious irreversible effects through inhalation, in contact with skin and if swallowed .
R23/24/25:Toxic by inhalation, in contact with skin and if swallowed .
R68/20/21/22:Harmful: possible risk of irreversible effects through inhalation, in contact with skin and if swallowed .
[Safety Statements ]

S16:Keep away from sources of ignition-No smoking .
S26:In case of contact with eyes, rinse immediately with plenty of water and seek medical advice .
S33:Take precautionary measures against static discharges .
S36/37:Wear suitable protective clothing and gloves .
S45:In case of accident or if you feel unwell, seek medical advice immediately (show label where possible) .
S7:Keep container tightly closed .
S25:Avoid contact with eyes .

UN 1173 3/PG 2
[WGK Germany ]


[F ]

[Autoignition Temperature]

427 °C

[HazardClass ]

[PackingGroup ]

[HS Code ]

[Safety Profile]

Potentially poisonous by ingestion. Toxicity depends upon alcohols in question, generally ethanol with methanol as a denaturant. A flammable liquid and dangerous fire hazard; can react vigorously with oxidzing materials. Moderate explosion hazard. See ETHANOL, METHYL ALCOHOL, and n-PROPYL ALCOHOL.
[Hazardous Substances Data]

141-78-6(Hazardous Substances Data)

LD50 orally in rats: 11.3 ml/kg (Smyth)
Raw materials And Preparation ProductsBack Directory
【Raw materials】

Ethanol-->Sulfuric acid-->Acetic acid-->Potassium carbonate-->1-Butanol-->Calcium oxide-->Potassium Acetate-->ketene
【Preparation Products】

N-ETHYL 3-NITROBENZENESULFONAMIDE-->Methyl 4-bromo-3-nitrobenzoate-->ETHYL ISONICOTINOYLACETATE-->Sodium 1-heptanesulfonate-->D-glucose pentakis[3,4-dihydroxy-5-[(trihydroxy-3,4,5-benzoyl)oxy]benzoate]-->Ampicillin sodium-->Diphenyl N-cyanocarbonimidate-->4(1H)-Pyrimidinone, 2-methyl- (8CI,9CI)-->4-FLUOROBENZYL ISOCYANATE-->2-(2-FORMYL-PHENOXY)-PROPIONIC ACID-->N-METHOXYCARBONYLMALEIMIDE-->2-Amino-6-bromopyridine-->3-METHYL-4-PYRIDINECARBOXYLIC ACID-->N-BENZYL-6-CHLORO-N-METHYLPYRIDAZIN-3-AMINE-->polyurethane adhesive for dry laminating-->2-ISOCYANATO-4,6-DIMETHOXYPYRIMIDINE-->Methyl 3-bromo-4-methylbenzoate-->N-Acetylethylenediamine-->3-Hydroxypiperidine-->ETHYL PICOLINOYLACETATE-->N-Hexadecyltrimethylammonium chloride-->Boc-O-benzyl-L-tyrosine-->2-Acetylthiazole-->ALUMINUM DI(ISOPROPOXIDE)ACETOACETIC ESTER CHELATE-->Tea polyphenol-->2-(4-Ethoxyphenyl)-2-methylpropanol-->BOC-Glycine-->dry laminating adhesive AD-->adhesive No.1 for shrink packaging-->Triphenylsilanol-->granular adhesive PUA-->special adhesive JA-501 for laminating packaging materials-->special adhesive JA-502 for aluminum-plastics laminating tape-->Enoximone-->coating adhesive tiemao 102-->adhesive M-861 for polyolefin plastics-->self curing adhesive SL-B404-->wealant XY-2-->Water-proof adhesive-->adhesive JX-18-1
Hazard InformationBack Directory
[General Description]

A clear colorless liquid with a fruity odor. Flash point 24°F. Less dense than water. Vapors heavier than air.
[Reactivity Profile]

ETHYL ACETATE(141-78-6) is also sensitive to heat. On prolonged storage, materials containing similar functional groups have formed explosive peroxides. This chemical may ignite or explode with lithium aluminum hydride. ETHYL ACETATE(141-78-6) may also ignite with potassium tert-butoxide. ETHYL ACETATE(141-78-6) is incompatible with nitrates, strong alkalis and strong acids. ETHYL ACETATE(141-78-6) will attack some forms of plastics, rubber and coatings. ETHYL ACETATE(141-78-6) is incompatible with oxidizers such as hydrogen peroxide, nitric acid, perchloric acid and chromium trioxide. Violent reactions occur with chlorosulfonic acid. . SOCl2 reacts with esters, such as ETHYL ACETATE(141-78-6), forming toxic SO2 gas and water soluble/toxic acyl chlorides, catalyzed by Fe or Zn (Spagnuolo, C.J. et al. 1992. Chemical and Engineering News 70(22):2.).
[Air & Water Reactions]

Highly flammable. Slightly soluble in water. This chemical is slowly hydrolyzed by moisture.

Toxic by inhalation and skin absorption; irritant to eyes and skin. Flammable, dangerous fire and explosion risk, flammable limits in air 2.2–9%. Questionable carcinogen.
[Health Hazard]

Headache, irritation of respiratory passages and eyes, dizziness and nausea, weakness, loss of consciousness.
[Potential Exposure]

This material is used as a solvent for nitrocellulose and lacquer. It is also used in making dyes,flavoring and perfumery, and in smokeless powder manufacture
[Fire Hazard]

HIGHLY FLAMMABLE: Will be easily ignited by heat, sparks or flames. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back. Most vapors are heavier than air. They will spread along ground and collect in low or confined areas (sewers, basements, tanks). Vapor explosion hazard indoors, outdoors or in sewers. Runoff to sewer may create fire or explosion hazard. Containers may explode when heated. Many liquids are lighter than water.
[First aid]

If this chemical gets into the eyes, remove any contact lenses at once and irrigate immediately for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts the skin, remove contaminated clothing and wash immediately with soap and water. Seek medical attention immediately. If this chemical has been inhaled, remove from exposure, begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. When this chemical has been swallowed, get medical attention. Give large quantities of water and induce vomiting. Do not make an unconscious person vomit.

UN1173 Ethyl acetate, Hazard Class: 3; Labels: 3-Flammable liquid.

May form explosive mixture with air. Heating may cause violent combustion or explosion. Incompatible with strong acids; strong alkalies; nitrates, strong oxidizers; chlorosulfonic acid; lithium aluminum hydride; oleum will hydrolyze on standing forming acetic acid and ethyl alcohol. This reaction is greatly accelerated by alkalies. Decomposes under influence of UV light, bases, and acids. Attacks aluminum and plastics.

Ethyl acetate (systematically, ethyl ethanoate, commonly abbreviated EtOAc or EA) is the organic compound with the formula CH3COOCH2CH3. This colorless liquid has a characteristic sweet smell (similar to pear drops) and is used in glues, nail polish removers, decaffeinating tea and coffee, and cigarettes (see list of additives in cigarettes). Ethyl acetate is the ester of ethanol and acetic acid; it is manufactured on a large scale for use as a solvent. The combined annual production in 1985 of Japan, North America, and Europe was about 400,000 tons. In 2004, an estimated 1.3M tons were produced worldwide.
[Waste Disposal]

Dissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber. All federal, state, and local environmental regulations must be observed. Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≧100 kg/ mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal.
[Physical properties]

Clear, colorless, mobile liquid with a pleasant, sweet fruity odor. Experimentally determined detection and recognition odor threshold concentrations were 23 mg/m3 (6.4 ppmv) and 48 mg/m3 (13.3 ppmv), respectively (Hellman and Small, 1974). Cometto-Mu?iz and Cain (1991) reported an average nasal pungency threshold concentration of 67,300 ppmv.

Although it has been reported present in some natural fruital aromas and in some distillates (rum, rum ether), it has not been reported yet as a constituent of essential oils; it has been identified also in the petals of Magnolia fuscata. Reported found in many foods including fresh and cooked apple, apricot, banana (169 ppm), sweet and sour cherry, citrus peel oils and juices, blueberry, cranberry, black currants, raspberry, blackberry, guava, passion fruit, melon, peaches, papaya, pineapple, cabbage, onion, leek, potato, tomato (3 to 6 ppm), clove, ginger, vinegar, breads, cheeses (0.2 to 0.8 ppm), butter (2 ppm), yogurt, milk, meats, cognac, beer (4 to 64 ppm), whiskies, cider, sherry, grape wines, rum, cocoa, coffee, tea, filberts, peanuts, popcorn, oats, honey, soybeans, coconut, olive oil (0.02 ppm) and olive.
[Production Methods]

Ethyl acetate is synthesized in industry mainly via the classic Fischer esterification reaction of ethanol and acetic acid. This mixture converts to the ester in about 65% yield at room temperature:
The reaction can be accelerated by acid catalysis and the equilibrium can be shifted to the right by removal of water. It is also prepared in industry using the Tishchenko reaction, by combining two equivalents of acetaldehyde in the presence of an alkoxide catalyst:
[Production Methods]

Ethyl acetate can be manufactured by the slow distillation of a mixture of ethanol and acetic acid in the presence of concentrated sulfuric acid. It has also been prepared from ethylene using an aluminum alkoxide catalyst.

Ethyl acetate is made by esterification of acetic acid with ethanol, from acetaldehyde, or by the direct addition of ethylene to acetic acid. BP started a 220,000 tonne/year plant in 2001 to operate the last of these processes, known as AVADA. Ethylene and acetic acid react in the presence of a heteropolyacid catalyst to give ethyl acetate at a claimed high selectivity and 99.97% purity. This is the world’s largest ethyl acetate plant and is motivated by its increasing use as a more “acceptable” solvent than hydrocarbons.
In some countries, where ethanol is expensive or there is surplus acetaldehyde capacity, ethyl acetate is made by a Tishchenko reaction. Sasol in South Africa was said to be investigating such a process in the early 2000s. Ethanol is a solvent for surface coatings, cleaning preparations, and cosmetics. Industrial ethanol is aerobically fermented to white vinegar (dilute acetic acid) of the type used for pickling. Gourmet vinegars—wine vinegar, cider vinegar, and so on, made by fermentation of alcoholic beverages—are also available. Ten percent of industrial ethanol production was used for vinegar in the United States in 2001.

Ethyl acetate can be hydrolyzed in acidic or basic conditions to regain acetic acid and ethanol. The use of an acid catalyst accelerates the hydrolysis, which is subject to the Fischer equilibrium mentioned above. In the laboratory, and usually for illustrative purposes only, ethyl esters are typically hydrolyzed in a two step process starting with a stoichiometric amount of strong base, such as sodium hydroxide. This reaction gives ethanol and sodium acetate, which is unreactive toward ethanol:
CH3CO2C2H5 + Na OH → C2H5OH + CH3CO2Na
The rate constant is 0.111 dm3 / mol.sec at 25 °C.
[Aroma threshold values]

Detection: 5 ppb to 5 ppm
[Flammability and Explosibility]

Ethyl acetate is a flammable liquid (NFPA rating = 3), and its vapor can travel a considerable distance to an ignition source and "flash back." Ethyl acetate vapor forms explosive mixtures with air at concentrations of 2 to 11.5% (by volume). Hazardous gases produced in ethyl acetate fires include carbon monoxide and carbon dioxide. Carbon dioxide or dry chemical extinguishers should be used for ethyl acetate fires.
[Chemical Reactivity]

Reactivity with Water No reaction; Reactivity with Common Materials: No reaction; Stability During Transport: Stable; Neutralizing Agents for Acids and Caustics: Not pertinent; Polymerization: Not pertinent; Inhibitor of Polymerization: Not pertinent.
[Pharmaceutical Applications]

In pharmaceutical preparations, ethyl acetate is primarily used as a solvent, although it has also been used as a flavoring agent. As a solvent, it is included in topical solutions and gels, and in edible printing inks used for tablets.
Ethyl acetate has also been shown to increase the solubility of chlortalidone and to modify the polymorphic crystal forms obtained for piroxicam pivalate, mefenamic acid, and fluconazole,and has been used in the formulation of microspheres. Ethyl acetate has been used as a solvent in the preparation of a liposomal amphotericin B dry powder inhaler formulation.(9) Its use as a chemical enhancer for the transdermal iontophoresis of insulin has been investigated.
In food applications, ethyl acetate is mainly used as a flavoring agent. It is also used in artificial fruit essence and as an extraction solvent in food processing.

Ethyl acetate is used in foods, and oral and topical pharmaceutical formulations. It is generally regarded as a relatively nontoxic and nonirritant material when used as an excipient.
However, ethyl acetate may be irritant to mucous membranes, and high concentrations may cause central nervous system depression. Potential symptoms of overexposure include irritation of the eyes, nose, and throat, narcosis, and dermatitis.
Ethyl acetate has not been shown to be a human carcinogen or a reproductive or developmental toxin.
The WHO has set an estimated acceptable daily intake of ethyl acetate at up to 25 mg/kg body-weight.
In the UK, it has been recommended that ethyl acetate be temporarily permitted for use as a solvent in food and that the maximum concentration consumed in food should be set at 1000 ppm.
LD50 (cat, SC): 3.00 g/kg
LD50 (guinea-pig, oral): 5.50 g/kg
LD50 (guinea-pig, SC): 3.00 g/kg
LD50 (mouse, IP): 0.709 g/kg
LD50 (mouse, oral): 4.10 g/kg
LD50 (rabbit, oral): 4.935 g/kg
LD50 (rat, oral): 5.62 g/kg
[Chemical Synthesis]

By reacting acetic acid and ethanol in the presence of sulfuric acid; by distillation of sodium potassium, or lead acetate with ethanol in the presence of sulfuric acid; by polymerizatin of acetaldehyde in the presence of aluminum ethylate or aluminum acetate as catalysts.

Ethyl acetate was not mutagenic in bacterial assays; it was not genotoxic in a number of in vivo assays but did cause chromosomal damage in hamster cells in vitro.
Ethyl acetate has a fruity odor detectable at 10ppm.
The 2003 ACGIH threshold limit valuetime- weighted average (TLV-TWA) for ethyl acetate is 400pm (1440mg/m3).

Identified among 139 volatile compounds identified in cantaloupe (Cucumis melo var. reticulates cv. Sol Real) using an automated rapid headspace solid phase microextraction method (Beaulieu and Grimm, 2001).
[Environmental Fate]

Biological. Heukelekian and Rand (1955) reported a 5-d BOD value of 1.00 g/g which is 54.9% of the ThOD value of 1.82 g/g.
Photolytic. Reported rate constants for the reaction of ethyl acetate and OH radicals in the atmosphere (296 K) and aqueous solution are 1.51 x 10-12 and 6.60 x 10-13 cm3/molecule?sec, respectively (Wallington et al., 1988b).
Chemical/Physical. Hydrolyzes in water forming ethanol and acetic acid (Kollig, 1993). The estimated hydrolysis half-life at 25 °C and pH 7 is 2.0 yr (Mabey and Mill, 1978).

Ethyl acetate is hydrolysed to ethyl alcohol, which is then partly excreted in the expired air and urine. The rest is metabolized, the acetate fraction becoming incor porated in the body pool (Fassett, 1963).

Ethyl acetate should be stored in an airtight container, protected from light and at a temperature not exceeding 30°C. Ethyl acetate is slowly decomposed by moisture and becomes acidic; the material can absorb up to 3.3% w/w water.
Ethyl acetate decomposes on heating to produce ethanol and acetic acid, and will emit acrid smoke and irritating fumes. It is flammable and its vapor may travel a considerable distance to an ignition source and cause a ‘flashback’.
The alkaline hydrolysis of ethyl acetate has been shown to be inhibited by polyethylene glycol and by mixed micelle systems.
[Purification Methods]

The most common impurities in EtOAc are water, EtOH and acetic acid. These can be removed by washing with aqueous 5% Na2CO3, then with saturated aqueous CaCl2 or NaCl, and drying with K2CO3, CaSO4 or MgSO4. More efficient drying is achieved if the solvent is further dried with P2O5, CaH2 or molecular sieves before distillation. CaO has also been used. Alternatively, ethanol can be converted to ethyl acetate by refluxing with acetic anhydride (ca 1mL per 10mL of ester), the liquid is then fractionally distilled, dried with K2CO3 and redistilled. [Beilstein 2 III 127.]
[Toxicity evaluation]

Ethyl acetate is rapidly hydrolyzed to ethanol and acetic acid. When ethyl acetate was injected intraperitoneal at 1.6 g kg-1, hydrolysis to acetic acid and ethanol occurred rapidly. The biological half-life value of the conversion of ethyl acetate to ethanol was found to be between 5 and 10 min. At doses higher than 1.6 g kg-1 in rats the rate of hydrolysis exceeded the ethanol oxidation leading to the ethanol accumulation in the vascular system.
[Regulatory Status]

Included in the FDA Inactive Ingredients Database (oral tablets and sustained-action tablets; topical and transdermal preparations). Included in nonparenteral medicines licensed in the UK (tablets, topical solutions, and gels). Ethyl acetate is also accepted for use in food applications in a number of countries including the UK. Included in the Canadian List of Acceptable Non-medicinal Ingredients.
Material Safety Data Sheet(MSDS)Back Directory
[msds information]

ethyl acetate(141-78-6).msds
Questions And AnswerBack Directory
[organic ester compound]

Ethyl Acetate is an organic ester compound with a molecular formula of C4H8O2 (commonly abbreviated as EtOAc or EA), appears as a colorless liquid. It is highly miscible with all common organic solvents (alcohols, ketones, glycols, esters), which make it a common solvent for cleaning, paint removal and coatings.
Ethyl acetate is found in alcoholic beverages, cereal crops, radishes, fruit juices, beer, wine, spirits etc. It has a fruity characteristic odor that is commonly recognized in glues, nail polish remover, decaffeinating tea and coffee, and cigarettes. Due to its agreeable aroma and low cost, this chemical is commonly used and manufactured in large scale in the world, as over 1 million tons annually.

ethyl acetate structure
[Chemical Properties]

Ethyl acetate (structure shown above) is the most familiar ester to many chemistry students and possibly the ester with the widest range of uses. Esters are structurally derived from carboxylic acids by replacing the acidic hydrogen by an alkyl or aryl group. Ethyl acetate itself is a colourless liquid at room temperature with a pleasant "fruity" smell, b.p. 77°C.
Ethyl acetate
Ethyl acetate has many uses, such as artificial fruit essences and aroma enhancers, artificial flavours for confectionery, ice cream and cakes, as a solvent in many applications (including decaffeinating tea and coffee) for varnishes and paints (nail varnish remover), and for the manufacture of printing inks and perfumes.
[Purification and water removal methods]

Ethyl acetate generally has a content of 95% to 98% containing a small amount of water, ethanol and acetic acid. It can be further purified as following: add 100mL of acetic anhydride into 1000mL of ethyl acetate; add 10 drops of concentrated sulfuric acid, heat and reflux for 4h to remove impurities such as ethanol and water, and then further subject to distillation. Distillate is oscillated by 20~30g of anhydrous potassium carbonate and further subject to re-distillation. The product has a boiling point of 77 °C and purity being over 99%.

Flavor and essence
Food flavor
Used largely to prepare bananas, pears, peaches, pineapple and grape scent food flavors, etc
Alcoholic essence
Used slightly as fragrance volatile
Perfume essence
Used slightly as fragrance volatile
Chemical manufacture
Production of acetamide, acetyl acetate, methyl heptanone, etc
Organic chemical raw materials
Production of organic acid
Extracting agent
Dilution and extraction
Supply excellent dissolving capacity
Chromatographic analysis
Standard material
Column chromatography and extractions
Main component of mobile phase
Reaction solvent
Be prone to hydrolysis and transesterification
Chemical analysis
Thermometer calibration for sugar separation
 Standard material
Determination of bismuth, boron, gold, molybdenum, platinum and thallium
Insect collecting and study
Used as effective asphyxiant to kill the collected insect quickly without destroying it
Textile industry
Cleaning agent
Supply excellent dissolving capacity
Flexographic and rotogravure printing
Dissolve the resin, control the viscosity and modify the drying rate
Electronics industry
Viscosity reducer
Reduce the viscosity of resins used in photoresist formulations
Paint manufacture
Dissolve and dilute the paints
Health & personal care products
The formulation of nail polish, nail polish removers and other manicuring products
Supply excellent dissolving capacity
Medicine manufacturing
Extraction agent; intermediate
Aroma enhancer
In perfume to enhance aroma
Tanning extracts
Used for desulfurization of tanning, cigarette materials, oil field drilling, metal flotation, descaling, etc
Production of adhesive
Extract many compounds (phosphorus, cobalt, tungsten, arsenic) from aqueous solution
Extracting agent

Industrial production of ethyl acetate is mainly classified into three processes.

The first one is a classical Fischer esterification process of ethanol with acetic acid in presence of acid catalyst. This process needs acid catalyst2 such as sulphuric acid, hydrochloride acid, ptoluene sulfonic acid etc. This mixture converts to the ester in about 65% yield at room temperature. 
The reaction can be accelerated by acid catalysis and the equilibrium can be shifted to the right by removal of water.

The second one is Tishchenko Reaction of acetaldehyde using aluminium triethoxide as a catalyst. In Germany and Japan, most ethyl acetate is produced via the Tishchenko process. 
This method has been proposed by two different routes; (i) dehydrogenative process, which uses copper or palladium based catalyst and (ii) the oxidative one, which employs, PdO supported catalysts.

The third one, which has been recently commercialized, is addition of acetic acid to ethylene using clay and heteroploy acid7 as a catalyst. 
The processes, however, have some disadvantages; both the conventional esterification and addition of acetic acid to ethylene need stock tanks and apparatus for several feed stocks. Moreover, they use acetic acid that causes apparatus corrosion. Although Teshchenko Reaction uses only one feed and it is a non-corrosive material, it is difficult to handle acetaldehyde because is not available outside of petrochemical industrial area.
In such circumstances, an improved process of ethyl acetate production is strongly desired.
[Extinguishing agent]

dry powder, dry sand, carbon dioxide, foam, and 1211 fire extinguishing agent
[Professional standards]

TWA 1400 mg/m³; STEL 2000 mg/m³
Spectrum DetailBack Directory
[Spectrum Detail]

Ethyl acetate(141-78-6)MS
Ethyl acetate(141-78-6)1HNMR
Ethyl acetate(141-78-6)13CNMR
Ethyl acetate(141-78-6)IR1
Ethyl acetate(141-78-6)IR2
Ethyl acetate(141-78-6)Raman
Well-known Reagent Company Product InformationBack Directory
[Acros Organics]

Ethyl acetate, suitable for residue and pesticides analysis, for residue analysis(141-78-6)
[Alfa Aesar]

Ethyl acetate, Spectrophotometric Grade, 99.5+%(141-78-6)
[Sigma Aldrich]


Ethyl Acetate,>99.5%(GC)(141-78-6)
141-78-6 suppliers list
Company Name: Shandong Yanshuo Chemical Co., Ltd.
Tel: +8618678179670
Fax: +86-533-7077568
Company Name: Shanghai Time Chemicals CO., Ltd.
Tel: +86-021-57951555 , +8618017249410
Fax: +86-021-57951555
Company Name: Tianjin Zhongxin Chemtech Co., Ltd.
Tel: +86-022-66880623 , +8618622897568
Fax: 022-66880086
Company Name: Hebei Guanlang Biotechnology Co., Ltd.
Tel: +8619930503282
Company Name: Henan Xiangtong Chemical Co., Ltd.
Tel: 86-371-61312303
Fax: 86-371-86017988
Company Name: Shanghai Longyu Biotechnology Co., Ltd.
Tel: +8615821988213
Fax: +86 15821988213
Company Name: Zhengzhou Alfa Chemical Co.,Ltd
Tel: +86-0371-55052911;; , +8613343822234;+8618703821685;+8618530059196
Company Name: Hubei Ipure Biology Co., Ltd
Tel: ; , +8618062405514;+8618062405514
Fax: 18062427325
Company Name: Hebei Ruiyao Biotechnology Co. Ltd
Tel: 15632182983 , 15532235888
Fax: 031188180881
Company Name: Connect Chemicals GmbH
Tel: +49 2102 2077-39
Fax: +49 2102 2077-40
Company Name: Wuxi Rejoys chemical Technology Co., Ltd.
Tel: 0510-86103381
Fax: 0510-86103381
Company Name: Shanghai UCHEM Inc.
Tel: 15502138767 , 15502138767
Company Name: ShenZhen Ipure Biology import and export company co.,ltd
Tel: 18071025641 , 18071025641
Company Name: Shaanxi Dideu Medichem Co. Ltd
Tel: +86-29-89586680 , 18192503167
Fax: +86-29-88380327
Company Name: Hangzhou Cherry Pharmaceutical Technology Co.,ltd
Tel: 0571-81636070
Fax: 0571-81636070
Tel: 008657185134551
Fax: 008657185134895
Company Name: Jinjiangchem Corporation
Tel: +86-512-50133713
Company Name: Baoji Guokang Healthchem co.,ltd
Tel: 09178656283
Tags:141-78-6 Related Product Information
20777-49-5 150-84-5 103-45-7 628-63-7 123-86-4 103-09-3 105-46-4 110-19-0 109-60-4 108-22-5 108-05-4 108-21-4 125-12-2 3681-71-8 123-92-2 5344-90-1 6939-95-3 454-91-1