ChemicalBook
Chinese english Germany Korea

硝酸マグネシウム·6水和物

硝酸マグネシウム·6水和物 化学構造式
7439-95-4
CAS番号.
7439-95-4
化学名:
硝酸マグネシウム·6水和物
别名:
マグネシウム;マグネシウム粉;ニトロマグネタイト;硝酸マグネシウム六水和物;硝酸マグネシウム·6水和物;マグネシウム金属;マグネシウム(リボン状);マグネシウム(粉末);マグネシウム(切削片状);金属マグネシウム;塩化Mg;マグネシウム,リボン;マグネシウム,粉末;マグネシウム,削り状;マグネシウム及びその化合物;MG;マグネシウム(テープ状)3.2MM×0.24MM;マグネシウム(粉末)40MESH;マグネシウム(リボン);マグネシウム(粉末) 20~50メッシュ
英語化学名:
Magnesium
英語别名:
RMC;NA 1869;MG-1000;Magnesio;MG004990;MG005125;MG005135;MG005105;MG005140;MG005120
CBNumber:
CB9249642
化学式:
Mg
分子量:
24.31
MOL File:
7439-95-4.mol

硝酸マグネシウム·6水和物 物理性質

融点 :
89 °C (dec.)(lit.)
沸点 :
1090 °C(lit.)
比重(密度) :
0.889 g/mL at 25 °C
蒸気密度:
6 (vs air)
蒸気圧:
1 mm Hg ( 621 °C)
闪点 :
−26 °F
貯蔵温度 :
water-free area
溶解性:
H2O: 1 M at 20 °C, clear, colorless
外見 :
turnings
色:
White
比重:
1.74
電気抵抗率 (resistivity):
4.46 μΩ-cm, 20°C
水溶解度 :
REACTS
Sensitive :
Hygroscopic
Merck :
14,5674
BRN :
4948473
CAS データベース:
7439-95-4(CAS DataBase Reference)
NISTの化学物質情報:
Magnesium(7439-95-4)
EPAの化学物質情報:
Magnesium (7439-95-4)
安全性情報
  • リスクと安全性に関する声明
  • 危険有害性情報のコード(GHS)
主な危険性  F,Xn
Rフレーズ  34-15-11-17-36/37/38-22-19-40-36/37
Sフレーズ  43-7/8-43A-36-33-26-36/37-16
RIDADR  UN 2056 3/PG 2
WGK Germany  1
RTECS 番号 OM3756000
3-9
自然発火温度 950 °F
TSCA  Yes
国連危険物分類  4.1
容器等級  III
HSコード  81049000
有毒物質データの 7439-95-4(Hazardous Substances Data)
消防法 危-2-MG-2-III
絵表示(GHS)
注意喚起語 Danger
危険有害性情報
コード 危険有害性情報 危険有害性クラス 区分 注意喚起語 シンボル P コード
H225 引火性の高い液体および蒸気 引火性液体 2 危険 P210,P233, P240, P241, P242, P243,P280, P303+ P361+P353, P370+P378,P403+P235, P501
H228 可燃性固体 可燃性固体 1
2
危険
警告
P210, P240,P241, P280, P370+P378
H250 空気に触れると自然発火 自然発火性液体;自然発火性固体 1 危険 P210, P222, P280, P302+P334,P370+P378, P422
H251 自己発熱;火災のおそれ 自己発熱性化学品 1 危険
H260 水に触れると自然発火するおそれのある可燃性 /引火性ガスを発生 水反応可燃性化学品 1 危険 P223, P231+P232, P280, P335+ P334,P370+P378, P402+P404, P501
H261 水に触れると可燃性/引火性ガスを発生 水反応可燃性化学品 2
3
危険
警告
P231+P232, P280, P370+P378,P402+P404, P501
H302 飲み込むと有害 急性毒性、経口 4 警告 P264, P270, P301+P312, P330, P501
H319 強い眼刺激 眼に対する重篤な損傷性/眼刺激 性 2A 警告 P264, P280, P305+P351+P338,P337+P313P
H335 呼吸器への刺激のおそれ 特定標的臓器毒性、単回暴露; 気道刺激性 3 警告
H351 発がんのおそれの疑い 発がん性 2 警告 P201, P202, P281, P308+P313, P405,P501
注意書き
P210 熱/火花/裸火/高温のもののような着火源から遠ざ けること。-禁煙。
P222 空気に接触させないこと。
P223 激しい反応と火災の発生の危険があるため、水と接 触させないこと。
P231+P232 湿気を遮断し、不活性ガス下で取り扱うこと。
P235+P410 涼しいところに置き、日光を避けること。
P280 保護手袋/保護衣/保護眼鏡/保護面を着用するこ と。
P370+P378 火災の場合:消火に...を使用すること。
P402+P404 乾燥した場所または密閉容器に保管するこ と。
P403+P235 換気の良い場所で保管すること。涼しいところに 置くこと。
P407 積荷/パレット間にすきまをあけること。
P413 ...kg 以上の大量品は、...0C 以下の 温度で保管すること。
P420 他の物質から離して保管すること。
P422 内容物を...中で保管すること。
P501 内容物/容器を...に廃棄すること。

硝酸マグネシウム·6水和物 価格 もっと(660)

メーカー 製品番号 製品説明 CAS番号 包装 価格 更新時間 購入
富士フイルム和光純薬株式会社(wako) W01W0113-0006 マグネシウム粉末 99.0+% (Mg) (mass/mass) (Titration)
Magnesium Powder 99.0+% (Mg) (mass/mass) (Titration)
7439-95-4 25g ¥2050 2018-12-26 購入
富士フイルム和光純薬株式会社(wako) W01W0113-0006 マグネシウム粉末 99.0+% (Mg) (mass/mass) (Titration)
Magnesium Powder 99.0+% (Mg) (mass/mass) (Titration)
7439-95-4 500g ¥6100 2018-12-26 購入
関東化学株式会社(KANTO) 19108-2A マグネシウム(切削片状) >99.9%
Magnesium, turnings >99.9%
7439-95-4 2.5kg ¥33700 2018-12-13 購入
関東化学株式会社(KANTO) 19108-1A マグネシウム(切削片状) >99.9%
Magnesium, turnings >99.9%
7439-95-4 500g ¥9200 2018-12-13 購入
Sigma-Aldrich Japan 13103 マグネシウム ribbon, ≥99.5% Mg basis
Magnesium ribbon, ≥99.5% Mg basis
7439-95-4 25g ¥8700 2018-12-25 購入

硝酸マグネシウム·6水和物 MSDS


Magnesium

硝酸マグネシウム·6水和物 化学特性,用途語,生産方法

外観

銀灰色の削り状

定義

本品は、粉末のマグネシウムからなる無機金属である。

溶解性

塩酸及び硫酸には水素を発生して溶け、硝酸には窒素酸化物を発生して溶ける。

主な性質

  1. 単体マグネシウムは銀白色の金属で、表面にできる酸化物が比較的丈夫なので、通常は金属として使用
  2. マグネシウムはアルミニウムより軽い(実用金属の中でも最も軽い。軽量化用途に鋳造、鍛造、延展材として使用される)
  3. マグネシウムは、反応性に富む金属で、空気中では酸化皮膜を作り、微粉末を加熱すると、白色閃光を放って燃える(水中で加熱すると、水と反応して水酸化マグネシウムと水素ガスを生成する)
  4. マグネシウムは塩素イオン、酸、塩類に対しては耐食性がよくないが、大部分のアルカリ及び有機加合物には耐える
  5. マグネシウムはアルミニウムの強度向上や耐食性改善のための添加剤として利用
  6. マグネシウムは活性なので、Ti、Zr、V、B、Be等の精錬で還元剤として使われる
  7. 海水からマグネシウム塩を多量に含む苦い塩類混合物の粉〔にがり〕が出来る。(「にがり」は、豆乳を凝固させる豆腐製造に使われる)

用途

グリニャール試薬調製用。

用途

還元剤。有機合成(和光試薬時報Vol.66 No.2,p.21(1998))。

用途

高純度金属、還元剤。

用途

高純度金属、還元剤、合金材料。

用途

合金材料、試薬(還元剤)。

用途

アルミニウム合金添加用、ジルコニウム?チタニウム製錬用、ノジュラー鋳鉄用、マグネシウム鋳物製造用、防食用、還元剤、マグネシウム電池、化学薬品製造用(グリニヤール試薬、その他)、鉄鋼の脱硫剤

用途

試薬(還元剤)。有機合成(和光試薬時報Vol.66 No.2,p.21(1998))。

化粧品の成分用途

還元剤

主な用途

  1. アルミニウム合金添加成分(5000系アルミニウム合金、船舶、アルミ缶)
  2. 四塩化チタン還元剤(スポンジチタン)
  3. 鉄鋼脱硫剤(鋳鉄用)
  4. 工具部品(電動工具/ダイカスト)
  5. 電子機器部品(パソコン、携帯電話の筐体、磁気ディスク、ロボット)
  6. 自動車部品(ホイール)
  7. 航空機部品(ミッションケース、鋳物、ヘリコプター)
  8. その他(スポーツレジャー、事務機器、触媒)

使用上の注意

強熱すると強い光を放って燃焼する。

説明

Magnesium is a Group 2 element (Group IIA in older labeling schemes). This element has the symbol Mg, atomic number 12, atomic weight of 24.305 g/mol and common oxidation number +2. It is the eighth most abundant element in the earth s crust by mass, although ninth in the Universe as a whole. This preponderance of magnesium in the Universe is related to the fact that it is easily built up in supernova stars from a sequential addition of three helium nuclei to carbon (which in turn is made from three helium nuclei). Magnesium constitutes about 2% of the Earth s crust by mass, which makes it the eighth most abundant element in the crust. Magnesium ion’s high solubility in water helps to ensure that it is the third most abundant element dissolved in seawater.

化学的特性

Silvery, moderately hard, alkaline-earth metal; readily fabricated by all standard methods. Lightest of the structural metals; strong reducing agent; electrical conductivity similar to aluminum. Soluble in acids; insoluble in water.

化学的特性

Magnesium is a light, silvery-white metal in various forms, and is a fire hazard.

物理的性質

Magnesium is a lightweight, silvery-white, malleable alkali earth metal that is flammable.It has a weak electronegativity (–1.31), which means it is highly reactive as it combines withsome nonmetals. As with other alkali earth metals, magnesium is a good conductor of heatand electricity. Its melting point is 648.8°C, its boiling point is 1090°C, and its density is1.74 g/cm3, making it about one-fifth the density of iron and only two-thirds as dense asaluminum.

同位体

There are 15 isotopes of magnesium, ranging from Mg-20 to Mg-34. Threeof these isotopes are stable: Mg-24 makes up 78.99% of all magnesium found in theEarth’s crust. Mg-25 makes up 10%, and Mg-26 constitutes most of the rest at 11%.The other 12 isotopes are radioactive and are produced artificially with half-lives rangingfrom microseconds to a few hours.

同位体

Magnesium has three stable isotopes: 24Mg, 25Mg and 26Mg. All are present in significant amounts. About 79% of Mg is 24Mg. The isotope 28Mg is radioactive and in the 1950s to 1970s was made commercially by several nuclear power plants for use in scientific experiments. This isotope has a relatively short half-life (21 h) and so its use was limited by shipping times. 26Mg has found application in isotopic geology, similar to that of aluminum. 26Mg is a radiogenic daughter product of 26Al, which has a half-life of 717,000 years. Large enrichments of stable 26Mg have been observed in the Ca–Al-rich inclusions of some carbonaceous chrondrite meteorites. The anomalous abundance of 26Mg is attributed to the decay of its parent 26Al in the inclusions. Therefore, the meteorite must have formed in the solar nebula before the 26Al had decayed. Hence, these fragments are among the oldest objects in the solar system and have preserved information about its early history.
It is conventional to plot 26Mg/24Mg against an Al/ Mg ratio. In an isochronic dating plot, the Al/Mg ratio plotted is 27Al/24Mg. The slope of the isochron has no age significance, but indicates the initial 26Al/27Al ratio in the sample at the time when the systems were separated from a common reservoir.

名前の由来

Magnesium is named after Magnesia, an ancient region of Thessaly, Greece, where it was mined. Magnesium is often confused with another element, manganese. One way to eliminate the confusion is to think of magnesium (Mg) as “12” and manganese (Mn) as “25” and to use the mental trick of remembering that “g” comes before “n” in the alphabet, so magnesium is the one with lower atomic number.

天然物の起源

Magnesium is the eighth most abundant of the elements found in the entire universe, andthe seventh most abundant found in the Earth’s crust. Its oxide (MgO) is second in abundance to oxide of silicon (SiO2), which is the most abundant oxide found in the Earth’s crust.Magnesium is found in great quantities in seawater and brines, which provide an endless supply. Each cubic mile of seawater contains about 12 billion pounds of magnesium. Althoughmagnesium metal cannot be extracted from seawater directly, it can be extracted by severalchemical processes through which magnesium chloride (MgCl2) is produced. Electrolysis isthen used with the magnesium chloride as the electrolyte at 714°C to produce metallic magnesium and chlorine gas. Another method of securing magnesium is known as the Pigeonprocess. This procedure uses the magnesium minerals dolomite or ferrosilicon. Dolomite(CaCO3), which also contains MgCO3, is crushed and then heated to produce oxides of Caand Mg. The oxides are heated to about 1200°C along with the ferrosilicon (an alloy of ironand silicon), and the silicon reduces the magnesium, producing a vapor of metallic magnesiumthat, as it cools, condenses to pure magnesium metal.

来歴

The name originates from the Greek word for a district in Thessaly called Magnesia . It is related to the terms magnetite and manganese , which also originated from this area, and required differentiation as separate substances. Magnesium is the seventh most abundant element in the Earth s crust by mass and eighth by molarity. It is found in large deposits of Magnesite, Dolomite and other minerals, and in mineral waters, where the magnesium ion is soluble. In 1618 a farmer at Epsom in England attempted to give his cows water from a well. They refused to drink because of the water s bitter taste. However the farmer noticed that the water seemed to heal scratches and rashes. The fame of Epsom Salts spread. Eventually the compound was recognized to be hydrated magnesium sulfate, MgSO4. The first person to propose that magnesium was an element was Joseph Black of Edinburgh in 1755. In 1792, an impure form of metallic magnesium was produced by Anton Rupprecht who heated magnesia (magnesium oxide, MgO) with charcoal. He named the element Austrium after his native Austria. In 1808, a small sample of the pure metal was isolated by Humphry Davy by the electrolysis of moist MgO. He proposed the name magnium based on the mineral Magnesite (MgCO3) that came from Magnesia in Greece. Neither name survived and eventually the metal was called magnesium. The metal itself was first produced in quantity in England by Davy in 1808 using then the new method of electrolysis of a mixture of molten magnesia and mercuric oxide. Antoine Bussy prepared it in a consistent form in 1831.

特性

While in a thin solid form, magnesium ignites at 650°C, and it is more easily ignited ina fine powder form. Burning magnesium produces a brilliant white light. It is also used asan oxidizer to displace several other metals from their compound minerals, salts, and ores. Itis alloyed with other metals to make them lighter and more machinable, so that they can berolled, pounded, formed into wires, and worked on a lathe.The ground water in many regions of the United States contains relatively high percentagesof magnesium, as well as some other minerals. A small amount improves the taste of water,but larger amounts result in “hard” water, which interferes with the chemical and physicalaction of soaps and detergents. The result is a scum-like precipitate that interferes with thecleansing action. The solution is the use of water softeners that treat hard water with eithersodium chloride or potassium chloride, which displace the magnesium—making the water“soft,” resulting in a more effective cleansing action.

来歴

Compounds of magnesium have long been known. Black recognized magnesium as an element in 1755. It was isolated by Davy in 1808, and prepared in coherent form by Bussy in 1831. Magnesium is the eighth most abundant element in the Earth’s crust. It does not occur uncombined, but is found in large deposits in the form of magnesite, dolomite, and other minerals. The metal is now principally obtained in the U.S. by electrolysis of fused magnesium chloride derived from brines, wells, and sea water. Magnesium is a light, silvery-white, and fairly tough metal. It tarnishes slightly in air, and finely divided magnesium readily ignites upon heating in air and burns with a dazzling white flame. It is used in flashlight photography, flares, and pyrotechnics, including incendiary bombs. It is one third lighter than aluminum, and in alloys is essential for airplane and missileconstruction. The metal improves the mechanical, fabrication, and welding characteristics of aluminum when used as an alloying agent. Magnesium is used in producing nodular graphite in cast iron, and is used as an additive to conventional propellants. It is also used as a reducing agent in the production of pure uranium and other metals from their salts. The hydroxide (milk of magnesia), chloride, sulfate (Epsom salts), and citrate are used in medicine. Dead-burned magnesite is employed for refractory purposes such as brick and liners in furnaces and converters. Calcined magnesia is also used for water treatment and in the manufacture of rubber, paper, etc. Organic magnesium compounds (Grignard’s reagents) are important. Magnesium is an important element in both plant and animal life. Chlorophylls are magnesiumcentered porphyrins. The adult daily requirement of magnesium is about 300 mg/day, but this is affected by various factors. Great care should be taken in handling magnesium metal, especially in the finely divided state, as serious fires can occur. Water should not be used on burning magnesium or on magnesium fires. Natural magnesium contains three isotopes. Twelve other isotopes are recognized. Magnesium metal costs about $100/kg (99.8%).

使用

magnesium plays an important role in various processes within the skin, including amino acid synthesis and protein synthesis (e.g., collagen), and in the metabolism of calcium, sodium, and phosphorus.

使用

Solid state synthesis with Ca and Sn resulted in a new phase, Ca6.2Mg3.8Sn7, which has an unprecedented type of tin chain composed of square-planar tin units.1

使用

In alloys to produce light weight structural metals. In aluminum alloys to improve mechanical properties; in Grignard reagents; in dry cell batteries; in pyrotechnics. For hot metal desulfurization, especially. molten iron; production of ductile iron; metal reduction to produce elemental boron, titanium, zirconium; corrosion protection of steel structures; sacrificial anodes for corrosion protection.

使用

Magnesium is a metallic element that is involved in certain bodily functions. sources of magnesium include magnesium chloride and magnesium oxide. it functions as a nutrient and dietary supplement.

使用

Small particles of powdered magnesium metal burn with a bright white flame that makesthe magnesium ideal for aerial flares dropped from airplanes that will light up ground areas. Itis has also been used in aerial firebombs during wars to devastate a city by fire because waterwill not extinguish the flames—sand must be used. In the past decades, thin magnesium wireor foil was placed inside glass bulbs containing pure oxygen to form flash bulbs for photographic purposes. When an electric charge ignites the magnesium, a brilliant light is produced.Today most flash cameras use a strobe light instead of flash bulbs.Pure magnesium metal is lighter in weight than aluminum and, thus, would make anexcellent construction metal were it not for its high reactivity and flammability at a rather lowtemperature when compared to other metals. It is an excellent metal to alloy with other metalsfor use in the aircraft, space, and automobile industries.It is used for the production (thermal reduction) of other metals, such as zinc, iron, titanium, zirconium, and nickel. For instance, because of its strong electropositive nature, magnesium can “desulfurize” molten iron when it combines with the sulfur impurities in the ironto produce high-grade metallic iron plus MgS.Milk of Magnesia is an alkaline (basic) water suspension and “creamy-like” suspended formof magnesium hydroxide, Mg(OH)2. It is used as an antacid to neutralize excess stomach acid.Magnesium can also be used in the form of Epsom salts as a treatment for rashes and as alaxative. A more important commercial use of Epsom salts is in the tanning of leather, as wellas in the dyeing of fabrics.Magnesium is essential for proper nutrition in humans as well as other living organisms.It plays an important role in the process of photosynthesis in plant chlorophyll and is thusessential to green plants, which are, in turn, essential for most living organisms. Magnesiumis also used as a dietary supplement for both humans and animals for maintaining properenzyme levels.Magnesium is an important element that acts as a catalyst in many life processes. In addition to photosynthesis, it is also required for the oxidation in animal cells that produce energyand for the production of healthy red blood cells. Humans cannot live without magnesium—which we acquire mainly from various foods.

使用

Magnesium is used in the manufacture ofalloys, optical mirrors, and precision instruments;in pyrotechnics; as a deoxidizing anddesulfurizing agent in metallurgy; in signallights, flash bulbs, and dry batteries; and inGrignard reagent.

使用

Magnesium powder is used in the manufacture of fireworks and marine flares where a brilliant white light is required. Flame temperatures of magnesium and magnesium alloys can reach 1371°C (2500 F), although flame height above the burning metal is usually less than 300 mm (12 in). Magnesium may be used as an ignition source for “thermite”, or otherwise difficult to ignite mixture of aluminum and iron oxide powder. Magnesium compounds are typically white crystals. Most are soluble in water, providing the sour-tasting magnesium ion, Mg2+. Small amounts of dissolved magnesium ion contribute to the tartness and taste of natural waters. Magnesium ion in large amounts is an ionic laxative, and magnesium sulfate (known as “Epsom Salts”) is sometimes used for this purpose. Socalled “milk of magnesia” is a water suspension of one of the few insoluble magnesium compounds, Mg(OH)2. The undissolved particles give rise to its appearance and name. Milk of magnesia is a mild base commonly used as an antacid.
Commercially, the chief use for the metal is as an alloying agent to make Al Mg alloys, sometimes called magnalium or magnelium . Since magnesium is less dense than aluminum, these alloys are valued for their relative lightness and strength. Magnesium is an important element for plant and animal life. The adult human daily requirement of magnesium is about 0.3 g/day. Magnesium is the 11th most abundant element by mass in the human body. Its ions are essential to all living cells, where they play a major role in manipulating important biological polyphosphate compounds like ATP, DNA and RNA. Hundreds of enzymes thus require magnesium ions in order to function. Magnesium, being the metallic ion at the center of chlorophyll, is thus a common additive to fertilizers. Magnesium compounds are used medicinally as common laxatives, antacids (i.e. Milk of Magnesia ), and in a number of situations where stabilization of abnormal nerve excitation and blood vessel spasm is required (i.e. to treat eclampsia). Magnesium ions are sour to the taste, and in low concentrations help to impart a natural tartness to fresh mineral waters.
Magnesium is also used:
? To remove sulfur from iron and steel.
? To refine titanium in the “Kroll” process.
? To photoengrave plates in the printing industry.
? To combine in alloys, where this metal is essential for airplane and missile construction.
? In the form of turnings or ribbons, to prepare “Grignard Reagents”, which are useful in organic synthesis.
? As an alloying agent, improving the mechanical, fabrication and welding characteristics of aluminum.
? As an additive agent in conventional propellants and the production of “nodular graphite” in cast iron.
? As a reducing agent for the production of uranium and other metals from their salts.
? As a desiccant, since it easily reacts with water.
? As a sacrificial (galvanic) anode to protect underground tanks, pipelines, buried structures, and water heaters.

定義

magnesium: Symbol Mg. A silverymetallic element belonging to group 2 (formerly IIA) of the periodic table; a.n. 12;r.a.m. 24.305; r.d. 1.74; m.p. 648.8°C;b.p. 1090°C. The element is found ina number of minerals, includingmagnesite (MgCO3), dolomite(MgCO3.CaCO3), and carnallite(MgCl2.KCl.6H2O). It is also present in sea water, and it is an essential element for living organisms. Extraction is by electrolysis of the fusedchloride. The element is used in a number of light alloys (e.g. for aircraft).Chemically, it is very reactive.In air it forms a protective oxide coating but when ignited it burns with an intense white flame. It also reacts with the halogens, sulphur, and nitrogen.Magnesium was first isolatedby Bussy in 1828.

定義

Metallic element of atomic number 12, group IIA of the periodic table, aw 24.305, valence = 2; three isotopes. Magnesium is the central element of the chlorophyll molecule; it is also an important component of red blood corpuscles.

一般的な説明

A light silvery metal. The more finely divided material reacts with water to liberate hydrogen, a flammable gas, though this reaction is not as vigorous as that of sodium or lithium with water. In finely divided forms is easily ignited. Burns with an intense white flame. Can be wax coated to render magnesium as nonreactive.

空気と水の反応

Pyrophoric in dust form [Bretherick 1979, p. 104]. Magnesium ribbon and fine magnesium shavings can be ignited at air temperatures of about 950°F and very finely divided powder has been ignited at air temperatures below 900°F. [Magnesium Standard 1967 p. 4]. The more finely divided material reacts with water to liberate hydrogen, a flammable gas, though this reaction is not as vigorous as that of sodium or lithium

反応プロフィール

Magnesium slowly oxidizes in moist air. Reacts very slowly with water at ordinary temperatures, less slowly at 100°C. Reacts with aqueous solutions of dilute acids with liberation of hydrogen [Merck 11th ed. 1989]. In the presence of carbon, the combination of chlorine trifluoride with aluminum, copper, lead, magnesium, silver, tin, or zinc results in a violent reaction [Mellor 2, Supp. 1. 1956]. A mixture of powdered magnesium with trichloroethylene or with carbon tetrachloride will flash or spark under heavy impact [ASESB Pot. Incid, 39. 1968]. Stannic oxide, heated with magnesium explodes [Mellor 7:401. 1946-47]. When carbon dioxide gas is passed over a mixture of powdered magnesium and sodium peroxide, the mixture exploded [Mellor 2:490. 1946-47]. Powdered magnesium plus potassium (or sodium) perchlorate is a friction- sensitive mixture [Safety Eng. Reports. 1947]. An explosion occurred during heating of a mixture of potassium chlorate and magnesium [Chem. Eng. News 14:451. 1936]. Powdered magnesium can decompose performic acid violently [Berichte 48:1139. 1915]. A mixture of finely divided magnesium and nitric acid is explosive [Pieters 1957. p. 28]. Magnesium exposed to moist fluorine or chlorine is spontaneously flammable [Mellor 4:267. 1946-47].

危険性

(Solid metal) Combustible at 650C. (Powder, flakes, etc.) Flammable, dangerous fire hazard. Use dry sand or talc to extinguish.

危険性

Magnesium metal, particularly in the form of powder or small particles, can be ignited atrelatively low temperatures. The resulting fires are difficult to extinguish, requiring dry sandor dirt. Water will just accelerate the fire as hydrogen that will intensify the fire is releasedfrom the water.
Some magnesium compounds, whose molecules contain several atoms of oxygen—Mg(ClO4), for example—are extremely explosive when in contact with moist organic substance,such as your hands.
Although traces of magnesium are required for good nutrition and health, some compoundsof magnesium are poisonous when ingested.

健康ハザード

Inhalation of magnesium dust can produceirritation of the eyes and mucous membranes.Magnesium may react with waterin the bronchial passage to form magnesiumhydroxide, which is caustic and maycause adverse effects on lungs. The fumescan cause metal fever.

健康ハザード

Dust irritates eyes in same way as any foreign material. Penetration of skin by fragments of metal is likely to produce local irritation, blisters, and ulcers which may become infected.

火災危険

Behavior in Fire: Forms dense white smoke. Flame is very bright.

农业用途

Magnesium (Mg) is an essential element for plant and animal growth. It belongs to Group 2, and has an atomic weight of 24.32 and atomic number of 13.
Magnesium is the eighth most abundant element in the earth's crust. It is made by electrolysis of fused magnesium chloride taken from sea water. Magnesium is a light, silvery-white, hard, reactive metal. It plays a crucial role in the life of both plants and animals. Magnesium and its compounds are also used in light metal alloys, incendiary devices, flash bulbs, flares, fertilizers and in medicine.
Magnesium is a constituent of chlorophyll, protochlorophyll, pectin and Phyllis. While its role in plant metabolism is not very clear, it seems to perform many functions in plants. For example, as the only metallic constituent of chlorophyll, Mg gives green color to leaves and has the structure of hemoglobin. It plays a role in photosynthesis, forming hexose sugar from water and carbon dioxide in the presence of sunlight. Magnesium regulates the uptake of other materials by the plant, and acts as a carrier of phosphorus to the seeds in the plant. Mg promotes the formation of oils and fats. It plays a role in the translocation of starch. Almost the whole of magnesium dissolves in the cell sap of the plant and becomes readily mobile in the plant. Many important colloidal chemical functions are ascribed to this fraction of magnesium.
Magnesium also participates in the production of proteins, fats, vitamins and some catalytic reactions in the enzyme system. It is mobile in plants and serves as a structural component in the ribosome, playing an important role in protein synthesis.
The above ground portion of most mature grain crops and grasses contain about 0.1 to 0.4% of magnesium, whereas that of cotton, soybean and alfalfa plants contain 0.3 to 0.6%. Plants absorb magnesium as a divalent cation (Mg2+). Its absorption depends on many factors, such as the amount of solution Mg2+, the soil pH and type, the percentage of Mg saturation on the cation exchange complex (CEC), and quantities of other exchangeable ions. Many soils absorb magnesium in a non-exchangeable form (MgCO3). Nitrate ions promote its absorption, whereas the ions of ammonium, potassium and calcium ions restrict it.
Plant species and varieties differ in their magnesium requirement. For instance, corn, potato, oil palm, cotton, citrus, tobacco, sugar beet and pastures respond to a high magnesium content. Seasonal and environmental conditions interact with plant varieties for magnesium uptake and cause magnesium deficiency.
The non-availability of magnesium in soils having less than one mole of the exchangeable magnesium per kg of soil, or the presence of magnesium in amounts less than 4% of the CEC, are indications of magnesium deficiency. Magnesium deficiencies occur in soils with high ratios of exchangeable Ca/Mg which should not exceed 10: 1 or 15: 1, depending on specific conditions. A high level of exchangeable potassium may interfere with the uptake of Mg by crops. The recommended ratios of K to Mg are less than 5 : 1 for field crops, 3: 1 for vegetables and sugar beets, and 2: 1 for fruits and green house crops.
The symptoms of magnesium deficiency, which do not occur too frequently, first appear on older leaves and then spread to younger ones. The green chlorophyll disappears, leaving behind spots between the leaf veins. The leaf margin then tums yellow (interveinal chlorosis in older leaves).The leaves exhibit a stripy or spotty appearance. However, unlike the deficiencies of K and Cu, the Mg deficiency symptoms of necrosis seldom occur, except for chlorotic discoloration. A large number of leaves may fall as a result of magnesium deficiency, especially in fruit and berry crops. Magnesium deficiency causes significant injuries, particularly in fruit crops, which may extend to the roots, and create phosphorus deficiency in oil plants, such as palm and linseed.
Magnesium deficiency in cotton and grapes appears as purplish red leaves with green veins. As the leaves become older, they turn brown. The lower leaves are affected first in corn, as whitish stripes appear along the veins and a purplish color is seen on the underside. In tobacco, it is known as sand down and appears as loss of green color at the tips of the lower leaves. As the deficiency worsens, the upper leaves become bleached and turn white in color. The deficiency in animals shows up as low blood-serum magnesium and muscle spasm, finally leading to death.
Soil analysis is widely used to detect the Mg deficiency and to estimate the Mg requirement of the plant. The most effective material for correcting magnesium deficiency and soil acidity is dolomitic limestone or dolomite. Magnesium uptake is greater from fine dolomite than from the coarse variety, while it is less than that from magnesium sulphate. An addition of 16.8 to 33.6 kg/ha of dolomite significantly increases the dry weight of corn. Similarly, the clover yield is higher with soluble magnesium than with dolomite. For soil with a pH more than 6.0, water-soluble magnesium sulphate is preferred to dolomite as a source of magnesium.
Other materials containing magnesium are magnesia,magnesium nitrate, magnesium silicate, serpentine,magnesium chloride solution, synthetic chelates and natural organic complexing substances. Magnesium sulphate (MgSO4), magnesium chloride (MgCl2),magnesium nitrate [Mg(NO3)2] and synthetic and natural chelates are well suited for clear-liquid foliar applications.
The double sulphate of potassium and magnesium is the most widely used magnesium additive for suspensions. Magnesium ammonium phosphate has nonburning and non-leaching characteristics. These are especially valuable when the fertilizer comes in contact with seeds or roots.
Depending on factors like the magnesium content, the rate of weathering, uptake by plants etc., magnesium ions (Mg2+) an be leached from soils.
Forage crops, particularly forage grass with magnesium concentration less than 2 g/kg, are dangerous for the cattle which on consumption of such grass, may get a disease called hypomagnesemia or grass tetany, in which the blood magnesium level decreases abnormally.

安全性プロファイル

Inhalation of dust and fumes can cause metal fume fever. The powdered metal igrutes readily on the skin causing burns. Particles embedded in the skin can produce gaseous blebs that heal A dangerous fire hazard in the form of dust or flakes when exposed to flame or oxiduing agents. In solid form, magnesium is difficult to ipte because heat is conducted rapidly away from the source of ignition; it must be heated above its melting point before it will burn. However, in finely divided form, it may be ignited by a spark or the flame of a match. Magnesium fires do not flare up violently unless there is moisture present. Therefore, it must be kept away from water, moisture, etc. It may ignited spontaneously when the material is finely divided and damp, particularly with water-oil emulsion. Moderately explosive in the form of dust when exposed to flame. Also, magnesium reacts with moisture, acids, etc., to evolve hydrogen, a highly dangerous fire and explosion hazard. Explosive reaction or ignition with calcium carbonate + hydrogen + heat, gold cyanide + heat, mercury cyanide + heat, silver oxide + heat, fused nitrates, phosphates, or sulfates (e.g., ammonium nitrate, metal nitrates), chloroformamidinium nitrate + water (when ignited with powder). The powder may explode on contact with halocarbons (e.g., chloromethane, chloroform, or carbon tetrachloride), and explodes when sparked in dichlorodifluoromethane. Hypergolic reaction with nitric acid + 2-nitroanhe. Mixtures of powdered magnesium and methanol are more powerful than some mihtary explosives. Mixtures of magnesium powder + water can be detonated. Reacts with acetylenic compounds including traces of acetylene found in ethylene gas to form explosive magnesium acetylide. chlorate salts, beryllium fluoride, boron diiodophosphide, carbon tetrachloride + methanol, 1,1,1 -trichloroethane, 1,2 dibromoethane, halogens or interhalogens (e.g., fluorine, chlorine, bromine, iodine vapor, chlorine trifluoride, iodine heptafluoride), hydrogen iodide, metal oxides + heat (e.g., berylhum oxide, cadmium oxide, copper oxide, mercury oxide, molybdenum oxide, tin oxide, zinc oxide), nitrogen (when ipted), silicon dioxide powder + heat, polytetrafluoroethylene powder + heat, sulfur + heat, tellurium + heat, barium peroxide, nitric acid vapor, hydrogen peroxide, ammonium nitrate, sodium iodate + heat, sodium nitrate + heat, dinitrogen tetraoxide (when ignited), lead dioxide. Ignites in carbon dioxide at 780°C, molten barium carbonate + water, fluorocarbon polymers + heat, carbon tetrachloride or trichloroethylene (on impact), dichlorodifluoromethane + heat. Incompatible with ethylene oxide, metal oxosalts, oxidants, potassium carbonate, Al + KClO4, [Ba(NO3)2 + BaO2 + Zn], bromobenzyl trifluoride, CaC, carbonates, CHCb, LCuSO4 (anhydrous) + NH4NO3 + KClO3 + H2O], CuSO4, (H2 + CaCO3), CH3Cl, N02, liquid oxygen, metal cyanides (e.g., cadmium cyanide, cobalt cyanide, copper cyanide, lead cyanide, nickel cyanide, zinc cyanide), performic acid, phosphates, KClO3, KClO4, AgNO3, NaClO4, (Na2O2 + CO2), sulfates, trichloroethylene, Na2O2. To fight fire, operators and firefighters can approach a magnesium fEe to within a few feet if no moisture is present. Water and ordinary extinguishers, such as CO2, carbon tetrachloride, etc., should not be used on magnesium fires. G-1 powder or powdered talc should be used on open fires. Dangerous when heated; burns violently in air and emits fumes; will react with water or steam to produce hydrogen. See also MAGNESIUM COMPOUNDS.

職業ばく露

Magnesium alloyed with manganese, aluminum, thorium, zinc, cerium, and zirconium, is used in aircraft, ships, automobiles, hand tools, etc., because of its lightness. Dow metal is the general name for a large group of alloys containing over 85% magnesium. Magnesium wire and ribbon are used for degassing valves in the radio industry and in various heating appliances; as a deoxidizer and desulfurizer in copper, brass, and nickel alloys; in chemical reagents; as the powder in the manufacture of flares, incendiary bombs, tracer bullets, and flashlight powders; in the nuclear energy process; and in a cement of magnesium oxide and magnesium chloride for floors. Magnesium is an essential element in human and animal nutrition and also in plants, where it is a component of altypes of chlorophyll. It is the most abundant intracellular divalent cation in both plants and animals. It is an activator of many mammalian enzymes

Carcinogenicity

MgO is regarded as an “experimental tumorigen”, although the only reference in the literature that could be found relating to the carcinogenicity of MgO was an instillation study, in which MgO dust instilled intratracheally for 30 weeks resulted in induction of histiocytic lymphomas in hamsters. It was also demonstrated that MgO enhanced the tumorigenesis of benzo[a]pyrene and was an effective carrier agent for the experimental induction of respiratory tract tumors.

輸送方法

UN1869 Magnesium pellets, turnings or ribbons, Hazard Class: 4.1; Labels: 4.1-Flammable solid. UN1418 Magnesium, powder or Magnesium alloys, powder, Hazard Class: 4.3; Labels: 4.3-Dangerous when wet material, 4.2-Spontaneously combustible material. UN2950 Magnesium granules, coated, particle size not <149 μm, Hazard Class: 4.3; Labels: 4.3-Dangerous when wet material

純化方法

It slowly oxidises in moist air and tarnishes. If dark in colour, do not use. The shiny solid should be degreased by washing with dry Et2O, dry it in vacuo and keep it in a N2 atmosphere. It can be activated by stirring it in Et2O containing a crystal of I2 then filtering it off, before drying and storing. [Gmelin’s Magnesium (8th edn) 27A 121 1937.]

不和合性

Dust may form explosive mixture with air. Capable of self-ignition in moist air. The substance is a strong reducing agent. Reacts violently with, oxidizers, strong acids; acetylene, ammonium salts; arsenic, beryllium fluoride, carbon tetrachloride, carbonates, chloroform, cyanides, chlorinated hydrocarbons; ethylene oxide; hydrocarbons, metal oxides; methanol, phosphates, silver nitrate; sodium peroxide; sulfates, trichloroethylene, and many other substances, causing fire and explosion hazards. Finely divided material, in powdered, chip or sheet form, reacts with moisture or acids, evolving flammable hydrogen gas, causing fire and explosion hazard. Finely divided form is readily ignited by a spark or flame. It splatters and burns at above 1260℃

硝酸マグネシウム·6水和物 上流と下流の製品情報

原材料

準備製品

ベンジル メチル スルフィド 2-フリルボロン酸 3-ニトロフェニル酢酸 4-tert-ブチルフェニルボロン酸 2-インドリンカルボン酸 ジ(トリブチルスタンニル)オキシド 1,2-ビス(ジメチルシリル)ベンゼン 2-エトキシフェニルボロン酸 硫酸マグネシウム 一水和物 ひ酸マグネシウム エチニルマグネシウムブロミド 2-(トリフルオロメチル)安息香酸 4-フェノキシ酪酸 α,α-ジフェニル-4-ピリジルメタノール ベンゾイルぎ酸 エチル ビス(トリメチルシリル)アセチレン 3,4-(メチレンジオキシ)フェニルボロン酸 tert-ブチルマグネシウムクロリド (26%エチルエーテル溶液, 約2mol/L) ジシクロヘキシルフェニルホスフィン トリエトキシフェニルシラン イソプロピルジフェニルホスフィン 3-(メトキシカルボニル)フェニルボロン酸 2-エチル-2-アダマンタノール Δ9(11)-メチルテストステロン アリルマグネシウムクロリド (10%テトラヒドロフラン溶液, 約1mol/L) トリクロロオクタデシルシラン 2-(メトキシカルボニル)フェニルボロン酸 (4-ピリジニル)(4-クロロフェニル)ケトン 2,2':5',2"-ターチオフェン シクロプロピル酢酸 1-(2-クロロピリジン-4-イル)エタノン 9-フェニルアントラセン 2-メチル-2-アダマンタノール トリシクロヘキシルホスフィン (トリシクロヘキシルホスフィンオキシド含む) (約18%トルエン溶液, 約0.60mol/L) ジエチルフェニルホスフィン 2-アセチル-3-メチルピラジン

硝酸マグネシウム·6水和物 生産企業

Global( 0)Suppliers
名前 電話番号 ファックス番号 電子メール 国籍 製品カタログ 優位度

7439-95-4(硝酸マグネシウム·6水和物)キーワード:


  • 7439-95-4
  • MAGNESIUM, METAL TURNINGS, REAGENTMAGNESIUM, METAL TURNINGS, REAGENTMAGNESIUM, METAL TURNINGS, REAGENTMAGNESIUM, METAL TURNINGS, REAGENT
  • magnesium scrap
  • Magnesium powder , sphere (Mg)
  • Magnesium powder(Mg)
  • Magnesium powder Magnesium turnings
  • Magnesium foil 0.15-0.30 mm thickness, 3 mm wide
  • Magnesium sputtering target, 76.2mm (3.0 in.) dia. x 3.18mm (0.125 in.) thick
  • Magnesium rod, 3.3cm (1.3 in.) dia. x 30cm (12 in.) long
  • Magnesium, Hard
  • Magnesium, Unannealed
  • Magnesium sputtering target, 76.2mm (3.0 in.) dia. x 6.35mm (0.250 in.) thick
  • Magnesium Nitrate Matrix Modifier Solution
  • Magnesium slug, 6.35mm (0.25 in.) dia. x 12.7mm (0.50 in.) length
  • Magnesium slug, 3.175mm (0.125 in.) dia. x 6.35mm (0.25 in.) length, Annealed
  • Magnesium, 99.9+%
  • Magnesium, 0.006 in. Thick Ribbon
  • Magnesium rod, 6.35mm (0.25 in.) dia. x 25.4mm (1.0 in.) length
  • Magnesium granules
  • Magnesium slug, 6.35mm (0.25 in.) dia. x 6.35mm (0.25 in.) length
  • Magnesium foil
  • Magnesium rod, 7.9mm (0.31 in.) dia. x 25mm (1 in.) length
  • Magnesium sputtering target, 50.8mm (2.0 in.) dia. x 6.35mm (0.250 in.) thick
  • Magnesium foil, 1.0mm (0.04 in.) thick, Hard, Temper: as rolled
  • Magnesium, 99+%
  • magnesium atom
  • Standard solution for the determination of magnesium
  • 2-aminoquinoline-3-carboxylate
  • 2-(4-methylphenyl)butanoate
  • 2-[carboxylatomethyl(carboxymethyl)amino]acetate
  • Magnesium powder,-325 mesh
  • マグネシウム
  • マグネシウム粉
  • ニトロマグネタイト
  • 硝酸マグネシウム六水和物
  • 硝酸マグネシウム·6水和物
  • マグネシウム金属
  • マグネシウム(リボン状)
  • マグネシウム(粉末)
  • マグネシウム(切削片状)
  • 金属マグネシウム
  • 塩化Mg
  • マグネシウム,リボン
  • マグネシウム,粉末
  • マグネシウム,削り状
  • マグネシウム及びその化合物
  • MG
  • マグネシウム(テープ状)3.2MM×0.24MM
  • マグネシウム(粉末)40MESH
  • マグネシウム(リボン)
  • マグネシウム(粉末) 20~50メッシュ
  • マグネシウム(削状)
  • マグネシウム末 45~100メッシュ
  • マグネシウム.粉末
  • マグネシウム粉末
  • マグネシウム, 削り状, 99.9%
  • マグネシウム, テープ状, 99.9%
  • マグネシウム, 粉末
  • マグネシウム, 塊状
  • マグネシウム, テープ状
  • マグネシウム, 削り状
  • マグネシウム 調整用
  • マグネシウム、SURE/SEAL™ボトル入り
  • マグネシウム rod (99.8%)
  • マグネシウム chips (99+%)
Copyright 2017 © ChemicalBook. All rights reserved