ChemicalBook
Chinese English Japanese Germany Korea

질화붕소

질화붕소
질화붕소 구조식 이미지
카스 번호:
10043-11-5
한글명:
질화붕소
동의어(한글):
보라존PYROLYTICBORONNITRIDE;붕소모노질화합물;붕소질화합물;질화붕소;질화브론;질화붕소(BORONNITRIDE);보론나이트라이드;아잔일리다인보레인;일질소화 붕소;질소화 붕소;질소화 붕소 (BN)
상품명:
Boron nitride
동의어(영문):
BN C;BNC1;BNNT;elbor;shobn;BN B50;BN F15;BN A01;bzn550;elborr
CBNumber:
CB9266197
분자식:
BN
포뮬러 무게:
24.82
MOL 파일:
10043-11-5.mol

질화붕소 속성

녹는점
2700℃
끓는 점
sublimes sl below 3000℃ [MER06]
밀도
0.9-1.1 g/mL at 25 °C
저장 조건
no restrictions.
물리적 상태
Powder
Specific Gravity
3.48
색상
White
수소이온지수(pH)
5-8 (100g/l, H2O, 20℃)(slurry)
수용성
Soluble in water (slightly soluble) at 20°C, and water (soluble) at 95°C.
감도
Hygroscopic
Merck
14,1346
안정성
Stable. Incompatible with oxidizing agents, water.
CAS 데이터베이스
10043-11-5(CAS DataBase Reference)
NIST
Boron nitride(10043-11-5)
EPA
Boron nitride (BN) (10043-11-5)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 Xi
위험 카페고리 넘버 36/37
안전지침서 26-36
유엔번호(UN No.) UN1950
WGK 독일 3
RTECS 번호 ED7800000
TSCA Yes
HS 번호 2850 00 20
위험 등급 2.1
독성 LD50 orally in Rabbit: > 2000 mg/kg LD50 dermal Rat > 2000 mg/kg
기존화학 물질 KE-03535
그림문자(GHS):
신호 어:
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H222 극인화성 에어로졸 인화성 에어로졸 구분 1 위험 P210, P211, P251, P410+P412
H319 눈에 심한 자극을 일으킴 심한 눈 손상 또는 자극성 물질 구분 2A 경고 P264, P280, P305+P351+P338,P337+P313P
H333 흡입하면 유해할 수 있음 급성 독성 물질 흡입 구분 5 P304+P312
H335 호흡 자극성을 일으킬 수 있음 특정 표적장기 독성 - 1회 노출;호흡기계 자극 구분 3 경고
H336 졸음 또는 현기증을 일으킬 수 있음 특정표적장기 독성 물질(1회 노출);마취작용 구분 3 경고 P261, P271, P304+P340, P312,P403+P233, P405, P501
예방조치문구:
P210 열·스파크·화염·고열로부터 멀리하시오 - 금연 하시오.
P251 압력용기 ; 사용 후에도 구멍을 뚫거나 연소시키지 마시오
P261 분진·흄·가스·미스트·증기·...·스프레이의 흡입을 피하시오.
P264 취급 후에는 손을 철저히 씻으시오.
P264 취급 후에는 손을 철저히 씻으시오.
P304+P340 흡입하면 신선한 공기가 있는 곳으로 옮기고 호흡하기 쉬운 자세로 안정을 취하시오.
P305+P351+P338 눈에 묻으면 몇 분간 물로 조심해서 씻으시오. 가능하면 콘택트렌즈를 제거하시오. 계속 씻으시오.
P337+P313 눈에 대한 자극이 지속되면 의학적인 조치· 조언를 구하시오.
P405 밀봉하여 저장하시오.
P410+P412 직사광선으로부터 보호

질화붕소 MSDS


Boron nitride

질화붕소 C화학적 특성, 용도, 생산

개요

Boron nitride is a material in which the extra electron of nitrogen (with respect to carbon) enables it to form structures that are isoelectronic with carbon allotropes.
Boron nitride is an inorganic compound with a flat, hexagonal crystal similar to graphite, but with the carbon atoms replaced by boron and nitrogen atoms. The alternate boron and nitrogen atoms are linked to form interlocking hexagonal rings with three boron atoms and three nitrogen atoms, and the layers are held together by van der Waals forces. There is no boron-nitrogen bonding between the layers.The bond length is 1.466Å and the interlayer spacing is 3.331 Å. A spherical form (with a hexagonal crystal structure) is also available.
Hexagonal boron nitride
Boron nitride can also be in cubic form in which alternately linked boron and nitrogen atoms form a tetrahedral bond network, similar to carbon atoms in diamond.
Cubic boron nitride

화학적 성질

white powder(s), 1μm or less 99.5% pure; hexagonal, most common form: a=0.2504 nm, c=0.6661nm; fcc: a=0.3615nm; hardness: hexagonal like graphite,?cub approaches that of diamond; band gap ~7.5 eV at 300K; dielectric 7.1; used in furnace insulation and in crucibles for melting aluminum, boron, iron, and silicon, also as sputtering target for dielectrics, diffusion masks, passivation layers [KIR81] [HAW93] [MER06] [CER91]

물리적 성질

White powder, hexagonal graphite-like form or cubic crystal; cubic form similar to diamond in its crystal structure, and reverts to graphite form when heated above 1,700°C; density 2.18 g/cm3; melts at 2,975°C (under nitrogen pressure); sublimes at 2,500°C at atmospheric pressure; insoluble in water and acid; attacked by hot alkalies and fused alkali carbonates; not wetted by most molten metals or glasses.
Cubic boron nitride (c-BN) does not exist in nature but it is a novel substance created by human. It is synthesized under high pressure and high temperature just like diamond counterpart and has the wurzite crystal structure. The tables below compare reference hardness and heat conductivity for a couple of abrasive materials. Apparently c-BN is excellent in these properties, second only to diamond, the highest.
Substance Hardness VHN (Vickers) Heat Conductivity (W/(m.K))
diamond 8600 1000 - 2000
c-BN 5000 590
alumina 2300 6
tungsten carbide 1800 42
silicon carbide 800 85
titanium nitride 2100 7.4
titanium carbide 3000 5.2
www.tomeidiamond.co.jp            

용도

boron nitride is a synthetically manufactured white, talc-like powder that can reflect light, giving a product a sparkle effect. It is primarily used in color cosmetics to provide subtle shimmer; however, it can also be found in skin care formulations for enhancing product smoothness and slip.

용도

Boron nitride is a material in which the extra electron of nitrogen (with respect to carbon) enables it to form structures that are isoelectronic with carbon allotropes. Also used in manufacture of alloys; in semiconductors, nuclear reactors, lubricants.
Hexagonal boron nitride can be used as an electrical insulator; as thermocouple protection sheaths, crucibles and linings for reaction vessels; and as a coating for refractory molds used in glass forming and in superplastic forming of titanium. It can also be incorporated in ceramics, alloys, resins, plastics, and rubber to give them self-lubricating properties. Hexagonal boron nitride is used the formulation of coatings and paints for high temperature applications. It is also used as a substrate for semi-conductors, lens coatings, and transparent windows.
https://www.cir-safety.org

제조 방법

Boron nitride is prepared by heating boric oxide with ammonia:
B2O3 + 2NH3 → 2BN + 3H2O
Alternatively, the compound can be prepared by heating boric oxide or boric acid with ammonium chloride or an alkali metal cyanide. Purified product can be obtained by high temperature reaction of boron halide with ammonia:
BCl3 + NH3 → BN + 3HCl
Boron nitride can also be made from the elements by heating boron and nitrogen at red heat.

생산 방법

In tonnage production, acetaldehyde may be manufactured by:
1. The direct oxidation of ethylene, requiring a catalytic solution of copper chloride plus small quantities of palladium chloride Cl2Pd.
2. The oxidation of ethyl alcohol C2H6O with sodium dichromate Cr2Na2O7, and
3. The dry distillation of calcium acetate C4H6CaO4 with calcium formate C2H2CaO4.

정의

boron nitride: A solid, BN, insolublein cold water and slowly decomposedby hot water; r.d. 2.25 (hexagonal);sublimes above 3000°C. Boronnitride is manufactured by heatingboron oxide to 800°C on an acid-solublecarrier, such as calcium phosphate,in the presence of nitrogen orammonia. It is isoelectronic with carbonand, like carbon, it has a veryhard cubic form (borazon) and asofter hexagonal form; unlikegraphite this is a nonconductor. It isused in the electrical industrieswhere its high thermal conductivityand high resistance are of especialvalue.

공업 용도

Boron nitride (BN) has many potential commercial applications. It is a white, fluffy powder with a greasy feel. It is used for heat-resistant parts by molding and pressing the powder without a binder to a specific gravity of 2.1 to 2.25.
BN may be prepared in a variety of ways, for example, by the reaction of boron oxide with ammonia, alkali cyanides, and ammonium chloride, or of boron halides and ammonia. The usually high chemical and thermal stability, combined with the high electrical resistance of BN, suggests numerous uses for this compound in the field of high-temperature technology. BN can be hot-pressed into molds and worked into desired shapes.
BN powders can be used as mold-release agents, high-temperature lubricants, and additives in oils, rubbers, and epoxies to improve thermal conductance of dielectric compounds. Powders also are used in metal- and ceramicmatrix composites (MMC and CMC) to improve thermal shock and to modify wetting characteristics.
The platy habit of the particles and the fact that boron nitride is not wet by glass favors use of the powder as a mold wash, e.g., in the fabrication of high-tension insulators. It is also useful as thermal insulation in induction heating. A cubic form of boron nitride (Borazon) similar to diamond in hardness and structure has been synthesized by the high-temperature, high-pressure process for making synthetic diamonds. Any uses it may find as a substitute for diamonds will depend on its greatly superior oxidation resistance.

질화붕소 준비 용품 및 원자재

원자재

준비 용품


질화붕소 공급 업체

글로벌( 223)공급 업체
공급자 전화 팩스 이메일 국가 제품 수 이점
Henan Tianfu Chemical Co.,Ltd.
0371-55170693
0371-55170693 info@tianfuchem.com CHINA 22607 55
Chemson Industrial (Shanghai) Co., Ltd.
86-21-65208861-ext8007
86-21-65180813 sales1@chemson.com.cn CHINA 117 58
career henan chemical co
+86-371-86658258
sales@coreychem.com CHINA 29954 58
Hubei Jusheng Technology Co.,Ltd.
86-18871470254
027-59599243 linda@hubeijusheng.com CHINA 28229 58
Xiamen AmoyChem Co., Ltd
+86 592-605 1114
sales@amoychem.com CHINA 6369 58
Chongqing Chemdad Co., Ltd
+86-13650506873
sales@chemdad.com CHINA 37282 58
HENAN BON INDUSTRIAL CO.,LTD
0371-55170695
info@hnbon.com CHINA 26742 58
Shaanxi Dideu Medichem Co. Ltd
18192627656
+86-29-88380327 1012@dideu.com CHINA 3949 58
Antai Fine Chemical Technology Co.,Limited
18503026267
info@antaichem.com CHINA 9664 58
Zhengzhou Alfa Chemical Co.,Ltd
+8613343822234 +86-0371-55052911
sales5@alfachem.cn;sales9@alfachem.cn;sale1@alfachem.cn China 12029 58

질화붕소 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved