Chinese English Japanese Germany Korea


요소 구조식 이미지
카스 번호:
포뮬러 무게:
MOL 파일:

요소 속성

132-135 °C(lit.)
끓는 점
332.48°C (estimate)
1.335 g/mL at 25 °C(lit.)
<0.1 hPa (20 °C)
n20/D 1.40
저장 조건
H2O: 8 M at 20 °C
물리적 상태
산도 계수 (pKa)
0.10(at 25℃)
Specific Gravity
8.0-10.0 (20℃, 8M in H2O)
1080 g/L (20 ºC)
최대 파장(λmax)
λ: 260 nm Amax: 0.03
λ: 280 nm Amax: 0.02
Substances to be avoided include strong oxidizing agents. Protect from moisture.
CAS 데이터베이스
57-13-6(CAS DataBase Reference)


위험품 표기 Xn,Xi
위험 카페고리 넘버 36/37/38-40-38
안전지침서 26-36-24/25-37
유엔번호(UN No.) Not regulated
WGK 독일 1
RTECS 번호 YR6250000
HS 번호 31021010
유해 물질 데이터 57-13-6(Hazardous Substances Data)
독성 LD50 orally in Rabbit: 8471 mg/kg LD50 dermal Rat 8200 mg/kg



요소 C화학적 특성, 용도, 생산


무색 무취의 결정이다. 양서류나 포유류의 소변에 포함되어 있다. 물에 잘 녹아 20℃ 100mL의 물에서 108g의 요소가 녹을수 있다. 가열하면 분해되어 암모니아와 뷰렛, 사아눌산으로 변한다.


포름알데히드와 반응하여 요소 수지를 만드는데 사용할 수 있다. 또한 고농도의 수용액은 단백질과 핵산을 변형시키는데 사용된다. 질산 암모늄과 요소가 혼합된 분말과 물이 들어가 있는 팩을 같이 넣어 냉각팩을 만드는 데 사용할 수 있다. 피부학에서는 요소의 수분 공급 효과로 로션에도 사용한다.

화학적 성질

Urea,CO(HN2)2, also known as carbamide, is a white crystalline powder that has a melting point of l32.7 °C (270 °F). It is a natural product of animal protein metabolism and is the chief nitrogen constituent of urine. Commercially, urea is produced by the reaction of ammonia and carbon dioxide. It is soluble in water, alcohol, and benzene.

화학적 성질

Urea is a white crystalline so lid.


Urea has the distinction of being the first synthesized organic compound. Until the mid-18th century, scientists believed organic compounds came only from live plants and animals. The first serious blow to the theory of vitalism, which marked the beginning of modern organic chemistry, occurred when Friedrich W?hler (1800 1882) synthesized urea from the two inorganic substances, lead cyanate and ammonium hydroxide: Pb(OCN)2 + 2NH4OH→2(NH2)2CO + Pb(OH)2. W?hler's discoveries on urea occurred while he was studying cyanates; he was attempting to synthesize ammonium cyanate when he discovered crystals of urea in his samples. He first prepared urea in 1824, but he did not identify this product and report his findings until 1828. W?hler's synthesis of urea signaled the birth of organic chemistry.


The primary use of urea is as a nitrogen source in fertilizers, with about 90% of the urea production being used for this purpose. Urea's high nitrogen content (46%) makes it a concentrated source for adding fixed nitrogen to soils. It can be applied to the soil alone, but its high nitrogen content can stress plants and impact the soil negatively, so it is often blended with other nutrients. Blending also reduces the nitrogen content of the fertilizer. For example, blending with ammonium nitrate, NH4NO3, in different proportions produces fertilizers with various nitrogen contents. Urea in the soil is converted to ammonium nitrogen and taken up by plants. It can be applied in solid granule form or dissolved in water and used as a spray. Urea is also used agriculturally as a supplement in livestock feeds to assist protein synthesis.
Another use of urea is for resins, which are used in numerous applications including plastics, adhesives, moldings, laminates, plywood, particleboard, textiles, and coatings. Resins are organic liquid substances exuded from plants that harden on exposure to air. The term now includes numerous synthetically produced resins. Urea resins are thermosetting, which means they harden when heated, often with the aid of a catalyst. The polymerization of urea and formaldehyde produces urea-formaldehyde resins, which is the second most abundant use of urea. Urea is dehydrated to melamine, which, when combined with formaldehyde, produces melamine-formaldehyde resins.


urea is incorporated into cosmetics for a variety of purposes, including moisturizing, desquamating, anti-microbial, and buffering. urea is regarded as a “true” moisturizer rather than a humectant because it attracts and retains moisture in the corneum layer. It facilitates the natural exfoliation of keratinocytes given its ability to dissolve intercellular cement in the corneum layer. Through its anti-microbial properties that inhibit the growth of micro-organisms in a product, urea can also be part of a larger preservative system. This ingredient’s buffering action is attributed to its ability to regulate the hydrolipid mantle. In addition, urea is found to enhance the penetration and absorption of other active ingredients, relieve itchiness, and help leave the skin feeling soft and supple. Anti-inflammatory, anti-septic, and deodorizing actions allow it to protect the skin’s surface against negative changes and help maintain healthy skin. Studies show that urea does not induce photoallergy, phototoxicity, or sensitization. The safest concentration of use in skin care preparations is between 2 and 8 percent. High concentrations of urea seem to be unstable when incorporated into skin care preparations and can also cause irritation. Acidic urea solutions can produce burning or stinging sensations.


Used for the denaturation of proteins and as a mild solubilization agent for insoluble or denatured proteins. Useful for renaturing proteins from samples already denatured with 6 M guanidine chloride such as inclusion bodies. May be used with guanidine hydrochloride and dithiothreitrol (DTT) in the refolding of denatured proteins into their native or active form.


anticholelithogenic; LD50(rat) 890 mg/kg ip


Urea is a physiological regulator of nitrogen excretion in mammals; synthesized in the liver as an end-product of protein catabolism and excreted in urine. Also occurs normally in skin. Emollient; diu retic.


1) UREA, FCC is an odorless and colorless solid that is an important nitrogen-containing substance found in mammal urine.2) Urea has little or no nutritional value to monogastric mammals but Urea is used in sugar-free chewing gum to adjust the texture


ChEBI: A carbonyl group with two C-bound amine groups.

생산 방법

Urea is an important industrial compound. The synthesis of urea was discovered in 1870.Commercial production of urea involves the reaction of carbon dioxide and ammonia at highpressure and temperature to produce ammonium carbamate. Ammonium carbamate is thendehydrated to produce urea (Figure 96.1). The reaction uses a molar ratio of ammonia tocarbon dioxide that is approximately 3:1 and is carried out at pressures of approximately 150atmospheres and temperatures of approximately 180°C.


A white crystalline compound made from ammonia and carbon dioxide. It is used in the manufacture of urea–formaldehyde (methanal) resins. Urea is the end product of metabolism in many animals and is present in urine.


Ureaphil (Hospira).

Biological Functions

The use of urea (Ureaphil, Urevert) has declined in recent years owing both to its disagreeable taste and to the increasing use of mannitol for the same purposes. When used to reduce cerebrospinal fluid pressure, urea is generally given by intravenous drip. Because of its potential to expand the extracellular fluid volume, urea is contraindicated in patients with severe impairment of renal, hepatic, or cardiac function or active intracranial bleeding.

일반 설명

Solid odorless white crystals or pellets. Density 1.335 g /cc. Noncombustible.

공기와 물의 반응

Water soluble.

반응 프로필

Urea is a weak base. Reacts with hypochlorites to form nitrogen trichloride which explodes spontaneously in air [J. Am. Chem. Soc. 63:3530-32]. Same is true for phosphorus pentachloride. Urea reacts with azo and diazo compounds to generate toxic gases. Reacts with strong reducing agents to form flammable gases (hydrogen). The heating of improper stoichiometric amounts of Urea and sodium nitrite lead to an explosion. Heated mixtures of oxalic acid and Urea yielded rapid evolution of gases, carbon dioxide, carbon monoxide and ammonia (if hot, can be explosive). Titanium tetrachloride and Urea slowly formed a complex during 6 weeks at 80°C., decomposed violently at 90°C., [Chem. Abs., 1966, 64, 9219b]. Urea ignites spontaneously on stirring with nitrosyl perchlorate, (due to the formation of the diazonium perchlorate). Oxalic acid and Urea react at high temperatures to form toxic and flammable ammonia and carbon monoxide gasses, and inert CO2 gas [Von Bentzinger, R. et al., Praxis Naturwiss. Chem., 1987, 36(8), 41-42].


May irritate eyes.


Behavior in Fire: Melts and decomposes, generating ammonia.


Fertilizer, Fungicide: Used in fertilizers and animal feeds, as a fungicide, in the manufacture of resins and plastics, as a stabilizer in explosives and in medicines, and others. Urea is used to protect against frost and is used in some pesticides as an inert ingredient as a stabilizer, as an inhibitor and as an intensifier for herbicides. Registered for use in EU countries . Registered for use in the U.S.


Urea, CO(NH2)2, also referred to as carbamide, is a white, crystalline, organic, water-soluble fertilizer. It contains around 46 % nitrogen, the highest N percentage any solid fertilizer can have.
Apart from its major use as a fertilizer, urea is also employed in the manufacture of paints, glues, plastics, paper, textiles, feed and weed control chemicals as well as a source of non-protein nitrogen.
Urea is an acceptable fertilizer for rice and preferable to nitrates for flooded rice because of the reduction of nitrates to N,O and/or nitrogen (in anaerobic conditions) which is lost to the atmosphere. Also, rice can utilize the ammonium form of nitrogen efficiently. Hydrolysis and nitrification (in aerobic conditions) are rapid in tropical, sub-tropical and warm climates.
Urea can thus be used efficiently but its use requires a better understanding than that required for other inorganic salts. It is applied to flooded soil three times: at the time of planting, tillering and panicle development. Similar to other nitrogenous fertilizers, urea promotes the growth of both weeds and crops. Urea solution after evaporation in vacuum evaporators, can be finally spraydried into pellets or prills. When protected from moisture (to which it is susceptible), urea is non-caking, freeflowing and suitable for storage and handling.
However, the benefits of urea outweigh its disadvantages. Insofar as the weed growth is concerned, effective methods should be devised to minimize it to a manageable level.
Urea is converted rapidly to ammonia by hydrolysis in the soil via the ammonium carbonate formation route, the latter being unstable (decomposing to ammonia and carbon dioxide). Urea is not as quick acting as ammonium nitrate because the nitrifying bacteria require a few days of warm and moist soil conditions to convert ammonia to the nitrate form. The formation of ammonium ion is slightly acidic in its ultimate reaction with the soil.
Urea is decomposed by the enzyme urease and a part of urea is lost as gaseous nitrogen. The time between urea application and the first availability of water to the soil is important, as also the temperature, because the enzyme is less reactive in cold than at high temperature (25 to 30°C). Prevention and retardation of the hydrolytic action of urease is important following the addition of urea to soil. This may help to avoid difficulties associated with ammonia formation and alkalization.
Many substances are urease inhibitors, but very few meet the rather specific requirements of being (a) effective at low concentrations, (b) relatively non-toxic to higher forms of life, (c) inexpensive, and (d) compatible with urea.
Urea can be sprayed on leaves and can also be mixed with insecticides or herbicides for soil application. A urea-ammonium nitrate mixture with herbicide is also used for weed control.
Urea, although an excellent fertilizer, suffers from the following drawbacks: (i) When applied to a bare soil surface, urea hydrolyzes rapidly and loses a significant quantity of ammonia by volatilization. Such losses vary from soil to soil and are greater for urea in a pellet form rather than in a solution form. Burning residues on the field is suggested as a practical means to control the ammonia loss because the burning reduces the concentration of the enzyme urease in plants. (ii) Rapid hydrolysis of urea in soils can cause injury to the seedlings by ammonia, if large quantities of the fertilizer are placed too close to the seeds. (iii) The fertilizer grade urea may contain toxic biuret which is formed during urea manufacture by an excessive temperature rise. A large concentration of biuret in urea ( > 2 %) causes injury to plants. Feed-grade urea is sometimes referred to by the number 262 which is the product of its nitrogen content (42%) multiplied by 6.25, the latter being the factor used by chemists to convert nitrogen to its protein equivalent. Urea is sometimes phytotoxic when placed close to seeds or seedlings. The phytotoxicity is caused by high local concentrations of ammonia during the hydrolysis stage or by accumulation of nitrite during the nitrification step. Another possible cause is the presence of biuret impurity in urea.
The whole series of urea-formaldehyde compounds, ranging from soluble to completely water-insoluble, are produced by reacting urea with formaldehyde in different ratios. The fertilizer grade contains a minimum of 35% nitrogen, largely water-insoluble but in a gradually available form. The suitability of these compounds as fertilizers also depends on the quantity and quality of cold-water-insoluble nitrogen. The solubility reflects the rate at which the nitrogen becomes available. Formaldehyde-treated urea seems to be more waterproof and less subject to dissolution by light showers or heavy dew.
In addition to the marked improvements in the size, strength and density of granular urea, urea has a number of good characteristics compared to ammonium nitrate. These include its (a) lesser tendency to stick and cake than ammonium nitrate, (b) insensitivity to fire and explosion, and (c) resistance to corrosion during handling and A popular urea-formaldehyde product in the USA contains 38% nitrogen (of which 28 % is water-insoluble) and has an activity index of 50. Urea-formaldehyde products are used to fertilize sod and certain speciality crops. As a result of the slow nitrification pattern, ureaformaldehyde prevents excessive leaching of nitrates.
The use of urea-formaldehyde is not popular because it is costlier than the other nitrogenous fertilizers.
The condensation product of urea and acetaldehyde is commercially known as urea-z. It is a slow-release nitrogen fertilizer containing around 31 % nitrogen. Urea crotonaldehyde, a derivative of urea (also known as crotonylidene diurea), is also a slow-release nitrogen fertilizer.
Urea-sulphur is a relatively new compound containing 40% nitrogen and 10% sulphur. The prilled material has excellent physical properties. Its urea part dissolves after being applied to the soil, leaving elemental sulphur that is converted into sulphate by the oxidizing bacteria.
Adding urea slurry to diammonium phosphate slurry (before or during granulation) makes urea-phosphate which has a higher nitrogen-to-phosphorus ratio than the ammonium phosphate does; the product contains 29% nitrogenand 12.7% phosphorus (29.0% P2O5).
A new liquid fertilizer material [CO(NH2)2?H3PO4] is made by the reaction of urea, phosphoric acid and water. Depending on the ratio of the reactants, the nitrogen content varies from 10% to 28% and the phosphorus content from 9 to 18%.



Safety Profile

Moderately toxic by intravenous and subcutaneous routes. Human reproductive effects by intraplacental route: ferthty effects. Experimental reproductive effects. Human mutation data reported. A human skin irritant. Questionable carcinogen with experimental carcinogenic and neoplastigenic data. Reacts with sodium hypochlorite or calcium hypochlorite to form the explosive nitrogen trichloride. Incompatible with NaNO2, P2Cl5, nitrosyl perchlorate. Preparation of the 15N-labeled urea is hazardous. When heated to decomposition it emits toxic fumes of NOx.

잠재적 노출

Urea is used in ceramics, cosmetics, paper processing; resins, adhesives, in animal feeds; in the manufacture of isocyanurates; resins, and plastics; as a stabilizer in explosives; in medicines; anticholelithogenic, and others.

응급 처치

If this chemical gets into the eyes, remove any contact lenses at once and irrigate immediately for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts the skin, remove contaminated clothing and wash immediately with soap and water. Seek medical attention immediately. If this chemical has been inhaled, remove from exposure, begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. When this chemical has been swallowed, get medical attention. Give large quantities of water and induce vomiting. Do not make an unconscious person vomit.

Purification Methods

Crystallise urea twice from conductivity water using centrifugal drainage and keeping the temperature below 60o. The crystals are dried under vacuum at 55o for 6hours. Levy and Margouls [J Am Chem Soc 84 1345 1962] prepared a 9M solution in conductivity water (keeping the temperature below 25o) and, after filtering through a medium-porosity glass sinter, added an equal volume of absolute EtOH. The mixture was set aside at -27o for 2-3 days and filtered cold. The precipitate was washed with a small amount of EtOH and dried in air. Crystallisation from 70% EtOH between 40o and -9o has also been used. Ionic impurities such as ammonium isocyanate have been removed by treating the concentrated aqueous solution at 50o with Amberlite MB-1 cation-and anion-exchange resin, and allowing it to crystallise on evaporation. [Benesch et al. J Biol Chem 216 663 1955.] It can also be crystallised from MeOH or EtOH, and is dried under vacuum at room temperature. [Beilstein 3 H 42, 3 I 19, 3 II 35, 3 III 80.]

비 호환성

Violent reaction with strong oxidizers, chlorine, permanganates, dichromates, nitrites, inorganic chlorides; chlorites, and perchlorates. Contact with hypochlorites can result in the formation of explosive compounds.

폐기물 처리

Controlled incineration in equipment containing a scrubber or thermal unit to reduce nitrogen oxide emissions.

요소 준비 용품 및 원자재


준비 용품

요소 공급 업체

글로벌( 352)공급 업체
공급자 전화 팩스 이메일 국가 제품 수 이점
Henan Tianfu Chemical Co.,Ltd.
0371-55170693 CHINA 20680 55
Jiangsu Kolod Food Ingredients Co.,Ltd.
+86-518-85110578 18805133257
+86-518-85110578 CHINA 100 60
Shenzhen Sendi Biotechnology Co.Ltd.
0755-23311925 18102838259
0755-23311925 CHINA 3203 55
Shanghai Time Chemicals CO., Ltd.
+86-021-57951555 CHINA 1367 55
Mainchem Co., Ltd.
+86-0592-6210733 CHINA 32457 55
Shanghai Yingrui Biopharma Co., Ltd.
+86-21-34979012 CHINA 661 60
Xiamen AmoyChem Co., Ltd
+86 (0)592-605 1114 CHINA 6374 58
Hebei Minshang Biotechnology Co., Ltd
+86-13230167943 CHINA 279 58
Hebei Chisure Biotechnology Co., Ltd.
+8613091036086; +8613292890173
+8613292893290; CHINA 1019 58
Shanghai Zheyan Biotech Co., Ltd.
18017610038 CHINA 3623 58

Copyright 2019 © ChemicalBook. All rights reserved