ChemicalBook > Product Catalog >Inorganic chemistry >Elementary substance >Magnesium


Magnesium is a chemical element with symbol Mg and atomic number 12. It is a shiny gray solid which bears a close physical resemblance to the other five elements in the second column (Group 2, or alkaline earth metals) of the periodic table: all Group 2 elements have the same electron configuration in the outer electron shell and a similar crystal structure.
Magnesium Suppliers list
Company Name: Hebei Guanlang Biotechnology Co., Ltd.
Tel: +86-0311-66562153 whatsapp +8615203118427
Products Intro: Product Name:Magnesium
Purity:99% Package:1kg,5kg,25kg
Company Name: Henan DaKen Chemical CO.,LTD.
Tel: +86-371-55531817
Products Intro: Product Name:Magnesium
Purity:99% Package:100g,500g,1kg,5kg,10kg
Company Name: Henan Tianfu Chemical Co.,Ltd.
Tel: 0371-55170693
Products Intro: CAS:7439-95-4
Purity:99% Package:500G;1KG;5KG;25KG
Company Name: Mainchem Co., Ltd.
Tel: +86-0592-6210733
Products Intro: Product Name:Magnesium
Company Name: Hysén on Hao Fine Chemical Co., Ltd.  Gold
Tel: 021-66058261/63812598/18301703451
Products Intro: Product Name:MagnesiuM
Purity:99% Package:500g;1KG
Magnesium Basic information
Description Uses Production Methods Category Explosive hazardous characteristics Storage characteristics Extinguishing agent
Product Name:Magnesium
Synonyms:magnesium scrap;Magnesium powder , sphere (Mg);Magnesium powder(Mg);Magnesium powder Magnesium turnings;Magnesium foil 0.15-0.30 mm thickness, 3 mm wide;Magnesium sputtering target, 76.2mm (3.0 in.) dia. x 3.18mm (0.125 in.) thick;Magnesium rod, 3.3cm (1.3 in.) dia. x 30cm (12 in.) long;Magnesium, Hard
Product Categories:-;Inorganic Chemicals;Reagent Plus;MagnesiumEssential Chemicals;Reagent Grade;Routine Reagents;MagnesiumAlternative Energy;Alkali MetalsMetal and Ceramic Science;Magnesium;Materials for Hydrogen Storage;Metals;Alkali Metals;Reduction;Synthetic Reagents;metal or element;Alkali Metals;Alternative Energy;Chemical Synthesis;Essential Chemicals;Inorganic Salts;Materials for Hydrogen Storage;Materials Science;Metal and Ceramic Science;Reagent Grade;Inorganics;Research Essentials;Solutions and Reagents;Synthetic Reagents;Reagent Plus
Mol File:7439-95-4.mol
Magnesium Structure
Magnesium Chemical Properties
Melting point 89 °C (dec.)(lit.)
Boiling point 1090 °C(lit.)
density 0.889 g/mL at 25 °C
vapor density 6 (vs air)
vapor pressure 1 mm Hg ( 621 °C)
Fp −26 °F
storage temp. water-free area
solubility H2O: 1 M at 20 °C, clear, colorless
form turnings
color White
resistivity4.46 μΩ-cm, 20°C
Water Solubility REACTS
Sensitive Hygroscopic
Merck 14,5674
BRN 4948473
CAS DataBase Reference7439-95-4(CAS DataBase Reference)
NIST Chemistry ReferenceMagnesium(7439-95-4)
EPA Substance Registry SystemMagnesium(7439-95-4)
Safety Information
Hazard Codes F,Xn
Risk Statements 34-15-11-17-36/37/38-22-19-40-36/37
Safety Statements 43-7/8-43A-36-33-26-36/37-16
RIDADR UN 2056 3/PG 2
WGK Germany 1
RTECS OM3756000
Autoignition Temperature950 °F
HazardClass 4.1
PackingGroup III
HS Code 81049000
Hazardous Substances Data7439-95-4(Hazardous Substances Data)
MSDS Information
Magnesium English
ACROS English
SigmaAldrich English
ALFA English
Magnesium Usage And Synthesis
DescriptionIn Nature:
Magnesium is a chemical element with symbol Mg and atomic number 12. It is a shiny gray solid which bears a close physical resemblance to the other five elements in the second column (Group 2, or alkaline earth metals) of the periodic table: all Group 2 elements have the same electron configuration in the outer electron shell and a similar crystal structure.
Elemental magnesium is a gray-white lightweight metal, two-thirds the density of aluminium. It tarnishes slightly when exposed to air, although, unlike the other alkaline earth metals, an oxygen-free environment is unnecessary for storage because magnesium is protected by a thin layer of oxide that is fairly impermeable and difficult to remove. Magnesium has the lowest melting (923 K (1,202 °F)) and the lowest boiling point 1,363 K (1,994 °F) of all the alkaline earth metals. Magnesium is probably one of the most common metals distributed in nature, constituting about 2.4% of the earth’s crust. The metal, however, does not occur in nature in elemental form. The principal minerals are dolomite [CaMg(CO3)2], magnesite MgCO3; carnallite KCl•MgCl2•6H2O, and silicate materials, such as talc Mg3(Si4O10)(OH)2 and asbestos H4Mg3Si2O9. Magnesium also is found in seawater, natural underground brines and salt deposits. Its concentration in sea water is 1,350 mg/L. Magnesium also occurs in all plants. Its porphyrin complex, chlorophyll, is essential for photosynthesis.

In Human body:
It is an essential nutrient element for humans. The dietary requirement for adults is about 300 mg per day. Magnesium plays an important role in over 300 enzymatic reactions within the body including the metabolism of food, synthesis of fatty acids and proteins, and the transmission of nerve impulses. It is one of the seven essential macrominerals; these are minerals that need to be consumed in relatively large amounts-at least 100 milligrams per day.
UsesMagnesium metal and its alloys have numerous uses in chemical, electrochemical, metallurgy, and electronic industries. Its thermal and electrical properties, lightness, and ease of fabrication into useful shapes make it an attractive choice in industrial applications. The metal is alloyed with aluminum for various structural uses. Its alloys with zinc, copper, nickel, lead, zirconium and other metals have many uses too. Magnesium alloys are used in automobile parts, aircraft, missiles, space vehicles, ship hulls, underground pipelines, memory discs, machine tools, furniture, lawn mowers, ladders, toys, and sporting goods. It also is used in making small and lightweight dry cell batteries. Chemical applications of magnesium include its use as a reducing agent, to prepare Grignard reagent for organic syntheses, and to purify gases. Magnesium also is used in blasting compositions, explosive sensitizers, incendiaries, signal flares, and pyrotechnics. Magnesium salts have numerous uses. They are discussed individually.
Production MethodsAlthough many commercial processes have been developed since the first electrolytic isolation of Mg metal by Davy and Faraday, and Bussy, by chemical reduction, the principles of the manufacturing processes have not changed. At present, the metal is most commonly manufactured by electrolytic reduction of molten magnesium chloride, in which chlorine is produced as a by-product. In chemical reduction processes, the metal is obtained by reduction of magnesium oxide, hydroxide, or chloride at elevated temperatures.
All the magnesium produced in the world currently is derived from its minerals dolomite and carnallite, as well as from the underground brines and seawaters. In most processes, magnesium is recovered from its mineral or brine either as magnesium chloride or converted to the latter for electrolytic production.
Many subterranean brines are very rich in magnesium chloride, often containing about 11% MgCl2. Sodium and calcium chlorides are the other two major components (c.12% NaCl and 2% CaCl2) in such brines. Solar evaporation of the brine solution and repeated heating increases the MgCl2 concentration in the brine to above 25% at which the solubility of NaCl significantly decreases and it can be filtered out. Repeated spray drying and purification by chlorination yields anhydrous magnesium chloride.
Magnesium chloride produced from dolomite for electrolysis involves a series of steps that include calcinations of the mineral to oxide and then conversion to magnesium hydroxide, neutralization of the hydroxide with hydrochloric acid to form hydrated chloride, addition of sulfuric acid to separate out calcium as its insoluble sulfate, and dehydration of the hydrated salt to yield anhydrous MgCl2. Similar steps are also followed to obtain the metal from seawater. The average concentration of magnesium ion in seawater is about 1,200 mg/L, thus making ocean water an enormous source of magnesium. Magnesium is precipitated as hydroxide by treatment with lime in an agitated flocculator:
MgCl2 + Ca(OH)2 → Mg(OH)2 + CaCl2
The insoluble Mg(OH)2 is filtered off and the seawater containing calcium chloride is returned to the sea. The hydroxide is then neutralized with hydrochloric acid. Evaporation of the solution yields hexahydrate, MgCl2•6H2O. The hexahydrate is either fully dehydrated to anhydrous MgCl2 by heating in dryers or partially dehydrated to monohydrate for electrolytic 512 MAGNESIUMproduction of metal. Magnesium hydroxide produced from seawater alternatively may be calcined to magnesium oxide, MgO. The latter is reduced with carbon and converted to magnesium chloride by heating in an electric furnace in the presence of chlorine gas:
MgO + C + Cl2 → MgCl2 + CO
MgO + CO + Cl2 → MgCl2 + CO2 Manufacturing processes, based on thermal reduction of magnesium oxide employ ferrosilicon or carbon as a reducing agent and use dolomite as the starting material. In these processes, the mineral is first calcined to produce oxides of magnesium and calcium, MgO•CaO. In one such batch process, known as the Pidgeon process, calcined dolomite is mixed with pulverized ferrosilicon powder, briquetted, and charged into an electrically-heated retort made of nickel-chrome-steel alloy and operated under vacuum (0.1 to 0.2 mm Hg). The reaction is carried out at about 1,150°C for several hours (8 hours). Silicon reduces magnesium oxide to metallic magnesium produced as vapor. The vapors condense into crystals in the cooler zone of the retort (500°C). The reactions are as follows:
2(MgO•CaO) + Si(Fe) → 2 Mg + 2CaO•SiO2(Fe)
The ferrosilicon alloy required in the above process is produced by thermal reduction of silica with carbon in the presence of iron:
SiO2 + 2C + Fe → Si(Fe) + 2CO
In the Pidgeon process discussed above, a secondary side reaction occurs between the CaO and SiO2 forming dicalcium silicate:
2CaO + SiO2 → Ca2SiO4
In a modified method known as Magnetherm process, sufficient aluminum oxide is added to melt this Ca2SiO4 slag. This allows the products to be removed in the molten state and, in addition, heats the reactor by the electrical resistance of the slag.
Magnesium also is produced by thermal reduction of its oxide by carbon:
MgO + C → Mg + CO
The above reaction is reversible above 1,850°C. The metal produced as vapor must be cooled rapidly to prevent any reversible reactions. Rapid cooling (shock cooling) can quench the reaction giving finely divided pyrophoric dust of the metal. The separation, however, is difficult. This makes the carbon reduction process less attractive than the other two thermal reduction processes, namely Pidgeon and Magnetherm processes.
CategoryWater flammable items
Explosive hazardous characteristicsIt is easily explosive after reacting with water and producing hydrogen.
Storage characteristicsVentilated warehouse, low temperature, dry; separated storage with oxidants and acid
Extinguishing agentGraphite powder, dry sand.
Chemical PropertiesSilvery, moderately hard, alkaline-earth metal; readily fabricated by all standard methods. Lightest of the structural metals; strong reducing agent; electrical conductivity similar to aluminum. Soluble in acids; insoluble in water.
Chemical PropertiesMagnesium is a light, silvery-white metal in various forms, and is a fire hazard.
HistoryCompounds of magnesium have long been known. Black recognized magnesium as an element in 1755. It was isolated by Davy in 1808, and prepared in coherent form by Bussy in 1831. Magnesium is the eighth most abundant element in the Earth’s crust. It does not occur uncombined, but is found in large deposits in the form of magnesite, dolomite, and other minerals. The metal is now principally obtained in the U.S. by electrolysis of fused magnesium chloride derived from brines, wells, and sea water. Magnesium is a light, silvery-white, and fairly tough metal. It tarnishes slightly in air, and finely divided magnesium readily ignites upon heating in air and burns with a dazzling white flame. It is used in flashlight photography, flares, and pyrotechnics, including incendiary bombs. It is one third lighter than aluminum, and in alloys is essential for airplane and missileconstruction. The metal improves the mechanical, fabrication, and welding characteristics of aluminum when used as an alloying agent. Magnesium is used in producing nodular graphite in cast iron, and is used as an additive to conventional propellants. It is also used as a reducing agent in the production of pure uranium and other metals from their salts. The hydroxide (milk of magnesia), chloride, sulfate (Epsom salts), and citrate are used in medicine. Dead-burned magnesite is employed for refractory purposes such as brick and liners in furnaces and converters. Calcined magnesia is also used for water treatment and in the manufacture of rubber, paper, etc. Organic magnesium compounds (Grignard’s reagents) are important. Magnesium is an important element in both plant and animal life. Chlorophylls are magnesiumcentered porphyrins. The adult daily requirement of magnesium is about 300 mg/day, but this is affected by various factors. Great care should be taken in handling magnesium metal, especially in the finely divided state, as serious fires can occur. Water should not be used on burning magnesium or on magnesium fires. Natural magnesium contains three isotopes. Twelve other isotopes are recognized. Magnesium metal costs about $100/kg (99.8%).
Usesmagnesium plays an important role in various processes within the skin, including amino acid synthesis and protein synthesis (e.g., collagen), and in the metabolism of calcium, sodium, and phosphorus.
UsesSolid state synthesis with Ca and Sn resulted in a new phase, Ca6.2Mg3.8Sn7, which has an unprecedented type of tin chain composed of square-planar tin units.1
UsesMagnesium is a metallic element that is involved in certain bodily functions. sources of magnesium include magnesium chloride and magnesium oxide. it functions as a nutrient and dietary supplement.
UsesIn alloys to produce light weight structural metals. In aluminum alloys to improve mechanical properties; in Grignard reagents; in dry cell batteries; in pyrotechnics. For hot metal desulfurization, especially. molten iron; production of ductile iron; metal reduction to produce elemental boron, titanium, zirconium; corrosion protection of steel structures; sacrificial anodes for corrosion protection.
DefinitionMetallic element of atomic number 12, group IIA of the periodic table, aw 24.305, valence = 2; three isotopes. Magnesium is the central element of the chlorophyll molecule; it is also an important component of red blood corpuscles.
General DescriptionA light silvery metal. The more finely divided material reacts with water to liberate hydrogen, a flammable gas, though this reaction is not as vigorous as that of sodium or lithium with water. In finely divided forms is easily ignited. Burns with an intense white flame. Can be wax coated to render magnesium as nonreactive.
Air & Water ReactionsPyrophoric in dust form [Bretherick 1979, p. 104]. Magnesium ribbon and fine magnesium shavings can be ignited at air temperatures of about 950°F and very finely divided powder has been ignited at air temperatures below 900°F. [Magnesium Standard 1967 p. 4]. The more finely divided material reacts with water to liberate hydrogen, a flammable gas, though this reaction is not as vigorous as that of sodium or lithium
Reactivity ProfileMagnesium slowly oxidizes in moist air. Reacts very slowly with water at ordinary temperatures, less slowly at 100°C. Reacts with aqueous solutions of dilute acids with liberation of hydrogen [Merck 11th ed. 1989]. In the presence of carbon, the combination of chlorine trifluoride with aluminum, copper, lead, magnesium, silver, tin, or zinc results in a violent reaction [Mellor 2, Supp. 1. 1956]. A mixture of powdered magnesium with trichloroethylene or with carbon tetrachloride will flash or spark under heavy impact [ASESB Pot. Incid, 39. 1968]. Stannic oxide, heated with magnesium explodes [Mellor 7:401. 1946-47]. When carbon dioxide gas is passed over a mixture of powdered magnesium and sodium peroxide, the mixture exploded [Mellor 2:490. 1946-47]. Powdered magnesium plus potassium (or sodium) perchlorate is a friction- sensitive mixture [Safety Eng. Reports. 1947]. An explosion occurred during heating of a mixture of potassium chlorate and magnesium [Chem. Eng. News 14:451. 1936]. Powdered magnesium can decompose performic acid violently [Berichte 48:1139. 1915]. A mixture of finely divided magnesium and nitric acid is explosive [Pieters 1957. p. 28]. Magnesium exposed to moist fluorine or chlorine is spontaneously flammable [Mellor 4:267. 1946-47].
Hazard(Solid metal) Combustible at 650C. (Powder, flakes, etc.) Flammable, dangerous fire hazard. Use dry sand or talc to extinguish.
Health HazardDust irritates eyes in same way as any foreign material. Penetration of skin by fragments of metal is likely to produce local irritation, blisters, and ulcers which may become infected.
Fire HazardBehavior in Fire: Forms dense white smoke. Flame is very bright.
Safety ProfileInhalation of dust and fumes can cause metal fume fever. The powdered metal igrutes readily on the skin causing burns. Particles embedded in the skin can produce gaseous blebs that heal A dangerous fire hazard in the form of dust or flakes when exposed to flame or oxiduing agents. In solid form, magnesium is difficult to ipte because heat is conducted rapidly away from the source of ignition; it must be heated above its melting point before it will burn. However, in finely divided form, it may be ignited by a spark or the flame of a match. Magnesium fires do not flare up violently unless there is moisture present. Therefore, it must be kept away from water, moisture, etc. It may ignited spontaneously when the material is finely divided and damp, particularly with water-oil emulsion. Moderately explosive in the form of dust when exposed to flame. Also, magnesium reacts with moisture, acids, etc., to evolve hydrogen, a highly dangerous fire and explosion hazard. Explosive reaction or ignition with calcium carbonate + hydrogen + heat, gold cyanide + heat, mercury cyanide + heat, silver oxide + heat, fused nitrates, phosphates, or sulfates (e.g., ammonium nitrate, metal nitrates), chloroformamidinium nitrate + water (when ignited with powder). The powder may explode on contact with halocarbons (e.g., chloromethane, chloroform, or carbon tetrachloride), and explodes when sparked in dichlorodifluoromethane. Hypergolic reaction with nitric acid + 2-nitroanhe. Mixtures of powdered magnesium and methanol are more powerful than some mihtary explosives. Mixtures of magnesium powder + water can be detonated. Reacts with acetylenic compounds including traces of acetylene found in ethylene gas to form explosive magnesium acetylide. chlorate salts, beryllium fluoride, boron diiodophosphide, carbon tetrachloride + methanol, 1,1,1 -trichloroethane, 1,2 dibromoethane, halogens or interhalogens (e.g., fluorine, chlorine, bromine, iodine vapor, chlorine trifluoride, iodine heptafluoride), hydrogen iodide, metal oxides + heat (e.g., berylhum oxide, cadmium oxide, copper oxide, mercury oxide, molybdenum oxide, tin oxide, zinc oxide), nitrogen (when ipted), silicon dioxide powder + heat, polytetrafluoroethylene powder + heat, sulfur + heat, tellurium + heat, barium peroxide, nitric acid vapor, hydrogen peroxide, ammonium nitrate, sodium iodate + heat, sodium nitrate + heat, dinitrogen tetraoxide (when ignited), lead dioxide. Ignites in carbon dioxide at 780°C, molten barium carbonate + water, fluorocarbon polymers + heat, carbon tetrachloride or trichloroethylene (on impact), dichlorodifluoromethane + heat. Incompatible with ethylene oxide, metal oxosalts, oxidants, potassium carbonate, Al + KClO4, [Ba(NO3)2 + BaO2 + Zn], bromobenzyl trifluoride, CaC, carbonates, CHCb, LCuSO4 (anhydrous) + NH4NO3 + KClO3 + H2O], CuSO4, (H2 + CaCO3), CH3Cl, N02, liquid oxygen, metal cyanides (e.g., cadmium cyanide, cobalt cyanide, copper cyanide, lead cyanide, nickel cyanide, zinc cyanide), performic acid, phosphates, KClO3, KClO4, AgNO3, NaClO4, (Na2O2 + CO2), sulfates, trichloroethylene, Na2O2. To fight fire, operators and firefighters can approach a magnesium fEe to within a few feet if no moisture is present. Water and ordinary extinguishers, such as CO2, carbon tetrachloride, etc., should not be used on magnesium fires. G-1 powder or powdered talc should be used on open fires. Dangerous when heated; burns violently in air and emits fumes; will react with water or steam to produce hydrogen. See also MAGNESIUM COMPOUNDS.
Potential ExposureMagnesium alloyed with manganese, aluminum, thorium, zinc, cerium, and zirconium, is used in aircraft, ships, automobiles, hand tools, etc., because of its lightness. Dow metal is the general name for a large group of alloys containing over 85% magnesium. Magnesium wire and ribbon are used for degassing valves in the radio industry and in various heating appliances; as a deoxidizer and desulfurizer in copper, brass, and nickel alloys; in chemical reagents; as the powder in the manufacture of flares, incendiary bombs, tracer bullets, and flashlight powders; in the nuclear energy process; and in a cement of magnesium oxide and magnesium chloride for floors. Magnesium is an essential element in human and animal nutrition and also in plants, where it is a component of altypes of chlorophyll. It is the most abundant intracellular divalent cation in both plants and animals. It is an activator of many mammalian enzymes
First aidIf this chemical gets into the eyes, remove any contact lenses at once and irrigate immediately for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts the skin, remove contaminated clothing and wash immediately with soap and water. Seek medical attention immediately. If fragments have become imbedded in the skin and removal cannot be ensured by thorough scrubbing, medical attention for thorough removal is recommended. If this chemical has been inhaled, remove from exposure, begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. When this chemical has been swallowed, get medical attention. Give large quantities of water and induce vomiting. Do not make an unconscious person vomit. The symptoms of metal fume fever may be delayed for 412 hours following exposure: it may last less than 36 hours. Medical observation is recommended for 24 to 48 hours after breathing overexposure, as pulmonary edema may be delayed. As first aid for pulmonary edema, a qualified medical professional might consider administering a corticosteroid spray. Cigarette smoking may exacerbate pulmonary injury and should be discouraged for at least 72 hours following exposure. If symptoms develop or overexposure is suspected, chest X-ray should be considered.
ShippingUN1869 Magnesium pellets, turnings or ribbons, Hazard Class: 4.1; Labels: 4.1-Flammable solid. UN1418 Magnesium, powder or Magnesium alloys, powder, Hazard Class: 4.3; Labels: 4.3-Dangerous when wet material, 4.2-Spontaneously combustible material. UN2950 Magnesium granules, coated, particle size not <149 μm, Hazard Class: 4.3; Labels: 4.3-Dangerous when wet material
Purification MethodsIt slowly oxidises in moist air and tarnishes. If dark in colour, do not use. The shiny solid should be degreased by washing with dry Et2O, dry it in vacuo and keep it in a N2 atmosphere. It can be activated by stirring it in Et2O containing a crystal of I2 then filtering it off, before drying and storing. [Gmelin’s Magnesium (8th edn) 27A 121 1937.]
IncompatibilitiesDust may form explosive mixture with air. Capable of self-ignition in moist air. The substance is a strong reducing agent. Reacts violently with, oxidizers, strong acids; acetylene, ammonium salts; arsenic, beryllium fluoride, carbon tetrachloride, carbonates, chloroform, cyanides, chlorinated hydrocarbons; ethylene oxide; hydrocarbons, metal oxides; methanol, phosphates, silver nitrate; sodium peroxide; sulfates, trichloroethylene, and many other substances, causing fire and explosion hazards. Finely divided material, in powdered, chip or sheet form, reacts with moisture or acids, evolving flammable hydrogen gas, causing fire and explosion hazard. Finely divided form is readily ignited by a spark or flame. It splatters and burns at above 1260℃
Tag:Magnesium(7439-95-4) Related Product Information
(1-Methylundecyl)magnesium chloride (1-Pentyloctyl)magnesium chloride (1-Butyldodecyl)magnesium chloride EDTA, MAGNESIUM SALT,ETHYLENEDIAMINETETRAACETIC ACID MAGNESIUM DIHYDROGEN SALT,ETHYLENEDIAMINETETRAACETIC ACID MAGNESIUM,(ETHYLENEDINITRILO)TETRAACETIC ACID MAGNESIUM SALT (Diisopropylamino) magnesium chloride EDTA CALCIUM MAGNESIUM SALT ETHYLENEDIAMINE TETRAKIS(PROPOXYLATE-BLOCK-ETHOXYLATE) TETROL 4-(Diethylamino)salicylaldehyde Diphenolic acid Magnesium hydroxide Magnesium MAGNESIUM CHLORIDE Magnesium oxide Magnesium sulfate heptahydrate Magnesium sulfate Pralmorelin 5-Chlorovaleric acid Magnesium stearate