ChemicalBook
Chinese English Japanese Germany Korea

크리센

크리센
크리센 구조식 이미지
카스 번호:
218-01-9
한글명:
크리센
동의어(한글):
크리센
상품명:
Chrysene
동의어(영문):
Crysene;CHRYSEN;Chrycene;NSC 6175;CHRYSENE;Chrysene,98%;Chrysene,90%;[4]Phenacene;CHRYSENE PURUM;Chrysene Standard
CBNumber:
CB9853344
분자식:
C18H12
포뮬러 무게:
228.29
MOL 파일:
218-01-9.mol

크리센 속성

녹는점
252-254 °C (lit.)
끓는 점
448 °C (lit.)
밀도
1.274
증기압
4.3 at 25 °C (de Kruif, 1980)
굴절률
1.7480 (estimate)
인화점
-17℃
저장 조건
Store below +30°C.
용해도
<0.0001g/l
물리적 상태
neat
수용성
insoluble
Merck
14,2255
BRN
1909297
Henry's Law Constant
1.97, 6.91, 18.8, 52.3, and 118 at 4.1, 11.0, 18.0, 25.0, and 31.0 °C, respectively (Bamford et al., 1998)
안정성
Stable. Combustible. Incompatible with strong oxidizing agents.
InChIKey
WDECIBYCCFPHNR-UHFFFAOYSA-N
CAS 데이터베이스
218-01-9(CAS DataBase Reference)
NIST
Chrysene(218-01-9)
IARC
2B (Vol. 92) 2010
EPA
Chrysene (218-01-9)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 T,N,Xn,F
위험 카페고리 넘버 45-50/53-68-40-67-66-36-11-52/53-36/37/38
안전지침서 53-45-60-61-36/37-26-16-24/25-23
유엔번호(UN No.) UN 3077 9/PG 3
WGK 독일 3
RTECS 번호 GC0700000
위험 등급 9
포장분류 III
HS 번호 29029090
유해 물질 데이터 218-01-9(Hazardous Substances Data)
독성 Acute LC50 for Neanthes arenaceodentata >50 μg/L (Rossi and Neff, 1978).
기존화학 물질 KE-05-0357
중점관리물질 필터링 별표2-47
그림문자(GHS):
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H225 고인화성 액체 및 증기 인화성 액체 구분 2 위험 P210,P233, P240, P241, P242, P243,P280, P303+ P361+P353, P370+P378,P403+P235, P501
H319 눈에 심한 자극을 일으킴 심한 눈 손상 또는 자극성 물질 구분 2A 경고 P264, P280, P305+P351+P338,P337+P313P
H336 졸음 또는 현기증을 일으킬 수 있음 특정표적장기 독성 물질(1회 노출);마취작용 구분 3 경고 P261, P271, P304+P340, P312,P403+P233, P405, P501
H341 유전적인 결함을 일으킬 것으로 의심됨 (노출되어도 생식세포 유전독성을 일으키지 않는다는 결정적인 증거가 있는 노출경로가 있다면 노출경로 기재) 생식세포 변이원성 물질 구분 2 경고 P201,P202, P281, P308+P313, P405,P501
H350 암을 일으킬 수 있음 (노출되어도 암을 일으키지 않는다는 결정적인 증거가 있는 노출경로가 있다면 노출경로 기재) 발암성 물질 구분 1A, 1B 위험
H351 암을 일으킬 것으로 의심됨 (노출되어도 암을 일으키지 않는다는 결정적인 증거가 있는 노출경로가 있다면 노출경로 기재) 발암성 물질 구분 2 경고 P201, P202, P281, P308+P313, P405,P501
H410 장기적 영향에 의해 수생생물에 매우 유독함 수생 환경유해성 물질 - 만성 구분 1 경고 P273, P391, P501
H412 장기적 영향에 의해 수생생물에 유해함 수생 환경유해성 물질 - 만성 구분 3 P273, P501
예방조치문구:
P201 사용 전 취급 설명서를 확보하시오.
P202 모든 안전 조치 문구를 읽고 이해하기 전에는 취급하지 마시오.
P210 열·스파크·화염·고열로부터 멀리하시오 - 금연 하시오.
P273 환경으로 배출하지 마시오.
P280 보호장갑/보호의/보안경/안면보호구를 착용하시오.
P281 요구되는 개인 보호구를 착용하시오
P391 누출물을 모으시오.
P308+P313 노출 또는 접촉이 우려되면 의학적인 조치· 조언를 구하시오.
P405 밀봉하여 저장하시오.
P501 ...에 내용물 / 용기를 폐기 하시오.

크리센 C화학적 특성, 용도, 생산

개요

Chrysene is a polycyclic aromatic hydrocarbon (PAH) with the molecular formula C18H12. It is one of the natural constituents in coal tar, from which it was first isolated and characterized. It is produced as a gas during combustion of coal, gasoline, garbage, animal, and plant materials and usually found in smoke and soot. Chrysene usually combines with dust particles in the air and is carried into water and soil and onto crops. Creosote, a chemical used to preserve wood contains chrysene. High concentration of chrysene in the air is typically found during open burning and home heating with wood and coal. People are exposed to chrysene from a variety of environmental sources such as air, water, and soil and from cigarette smoke and cooked food. General population is usually exposed to chrysene along with a mixture of similar chemicals. Chrysene is a by-product of many industrial processes and thereby released in the atmosphere. Chrysene is lipophilic, insoluble in water, slightly soluble in other polar solvents such as alcohol, ether and moderately soluble in benzene and toluene. However, it readily dissolves in benzene and toluene at an elevated temperature. The name ‘Chrysene’ originates from the Greek word chrysos, meaning ‘gold,’ and is due to the golden yellow color of the slightly impure crystals. However, in pure state, chrysene is a colorless, crystalline solid. It has characteristic red–blue fluorescence under UV light. Some important properties of chrysene are summarized below.

화학적 성질

crystalline powder

화학적 성질

Chrysene is a combustible, white (when pure), red, or blue, fluorescent crystalline solid. Odorless. Chrysene 859 Polycyclic aromatic hydrocarbons (PAHs) are compounds containing multiple benzene rings and are also called polynuclear aromatic hydrocarbons

물리적 성질

Orthorhombic, bipyramidal plates from benzene exhibiting strong reddish-blue fluorescence under UV light

용도

Organic synthesis.

용도

Laboratory reagent; formed during the pyrolysis of organic matter

용도

Used strictly for research purposes.

Synthesis Reference(s)

Tetrahedron Letters, 29, p. 3865, 1988 DOI: 10.1016/S0040-4039(00)82136-X

일반 설명

A crystalline solid. Denser than water and insoluble in water. The primary hazard is the threat to the environment. Immediate steps should be taken to limit spread to the environment. Toxic by ingestion. Used to make other chemicals.

공기와 물의 반응

Insoluble in water.

반응 프로필

Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic hydrocarbons, such as Chrysene, and strong oxidizing agents. They can react exothermically with bases and with diazo compounds. Substitution at the benzene nucleus occurs by halogenation (acid catalyst), nitration, sulfonation, and the Friedel-Crafts reaction.

위험도

Possible carcinogen.

건강위험

There is very little information published onthe acute toxicity of chrysene. The oral toxicity is expected to be low. Animal studies showsufficient evidence of carcinogenicity. It produced skin cancer in animals. Subcutaneousadministration of chrysene in mice causedtumors at the site of application. Cancer-causing evidence in humans is not known. Ahistidine reversion–Ames test for mutagenicity showed positive.

건강위험

ACUTE/CHRONIC HAZARDS: Toxic.

화재위험

Some may burn but none ignite readily. Containers may explode when heated. Some may be transported hot.

Safety Profile

Confirmed carcinogen with experimental carcinogenic, neoplastigenic, and tumorigenic data by skin contact. Human mutation data reported. When heated to decomposition it emits acrid smoke and fumes.

잠재적 노출

Almost never found by itself, chrysene is found in gasoline and diesel exhaust as well as in cigarette smoke; and in coal tar; coal tar pitch; creosote. It is used in organic synthesis.

Carcinogenicity

The IARC has determined that there is limited evidence that chrysene is carcinogenic to experimental animals.ACGIH has classified chrysene as a confirmed animal carcinogen with unknown relevance to humans; a numerical threshold limit value (TLV) is not recommended.

Source

Identified in Kuwait and South Louisiana crude oils at concentrations of 6.9 and 17.5 ppm, respectively (Pancirov and Brown, 1975). Also present in high octane gasoline (6.7 mg/kg), bitumen (1.64–5.14 ppm), gasoline exhaust (27–318 μg/m3), cigarette smoke (60 μg/1,000 cigarettes), and South Louisiana crude oil (17.5 ppm) (quoted, Verschueren, 1983). Also detected in fresh motor oil (56 mg/L), used motor oil (10.17 mg/L) (Pasquini and Monarca, 1093).
Detected in groundwater beneath a former coal gasification plant in Seattle, WA at a concentration of 10 μg/L (ASTR, 1995). The concentration of chrysene in coal tar and the maximum concentration reported in groundwater at a mid-Atlantic coal tar site were 3,600 and 0.0063 mg/L, respectively (Mackay and Gschwend, 2001). Based on laboratory analysis of 7 coal tar samples, chrysene concentrations ranged from 620 to 5,100 ppm (EPRI, 1990). Chrysene was also detected in 9 commercially available creosote samples at concentrations ranging from 19 to 620 mg/kg (Kohler et al., 2000).
Identified in high-temperature coal tar pitches used in roofing operations at concentrations ranging from 2,600 to 88,000 mg/kg (Arrendale and Rogers, 1981; Malaiyandi et al., 1982).
Chrysene was detected in asphalt fumes at an average concentration of 115.67 ng/m3 (Wang et al., 2001).
Under atmospheric conditions, a low rank coal (0.5–1 mm particle size) from Spain was burned in a fluidized bed reactor at seven different temperatures (50 °C increments) beginning at 650 °C. The combustion experiment was also conducted at different amounts of excess oxygen (5 to 40%) and different flow rates (700 to 1,100 L/h). At 20% excess oxygen and a flow rate of 860 L/h, the amount of chrysene emitted ranged from 127.9 ng/kg at 950 °C to 1,186.0 ng/kg at 750 °C. The greatest amount of PAHs emitted were observed at 750 °C (Mastral et al., 1999).

환경귀착

Biological. When chrysene was statically incubated in the dark at 25 °C with yeast extract and settled domestic wastewater inoculum, significant biodegradation with varied adaptation rates was observed. At concentrations of 5 and 10 mg/L, 59 and 38% biodegradation, respectively, were observed after 28 d (Tabak et al., 1981).
Soil. The reported half-lives for chrysene in a Kidman sandy loam and McLaurin sandy loam are 371 and 387 d, respectively (Park et al., 1990).
Surface Water. In a 5-m deep surface water body, the calculated half-lives for direct photochemical transformation at 40 °N latitude, in the midsummer during midday were 13 h and 68 d with and without sediment-water partitioning, respectively (Zepp and Schlotzhauer, 1979).
Photolytic. Based on structurally related compounds, chrysene may undergo photolysis to yield quinones (U.S. EPA, 1985) and/or hydroxy derivatives (Nielsen et al., 1983). The atmospheric half-life was estimated to range from 0.802 to 8.02 h (Atkinson, 1987). Behymer and Hites (1985) determined the effect of different substrates on the rate of photooxidation of chrysene using a rotary photoreactor. The photolytic half-lives of chrysene using silica gel, alumina, and fly ash were 100, 78, and 38 h, respectively.

운송 방법

UN3077 Environmentally Hazardous substances, solid, n.o.s., Hazard class: 9; Labels: 9-Miscellaneous hazardous material, Technical Name Required.

Purification Methods

Purify chrysene by chromatography on alumina from pet ether in a darkened room. Its solution in *C6H6 is passed through a column of decolorising charcoal, then crystallised by concentrating the eluate. It has also been purified by crystallising from *C6H6 or *C6H6/pet ether, and by zone refining. [Gorman et al. J Am Chem Soc 107 4404 1985]. It is freed from 5H-benzo[b]carbazole by dissolving it in N,N-dimethylformamide and successively adding small portions of alkali and iodomethane until the fluorescent colour of the carbazole anion no longer appears when alkali is added. The chrysene (and alkylated 5H-benzo[b]carbazole) separate on addition of water. Final purification is by crystallisation from ethylcyclohexane and/or from 2-methoxyethanol [Bender et al. Anal Chem 36 1011 1964]. It can be sublimed in a vacuum. [Beilstein 5 IV 2554.]

Toxicity evaluation

Generally, disposal of PAH from the industrial plants, accidental release from the containers, smoke from plant, combustion, or automobile exhaust causes chrysene and other PAHs to enter the environment. Because of the poor water solubility and low vapor pressure, chrysene has limited chance to get washed away or evaporate in the environment. Therefore, it remains immobile in soils. If exposed to water, it gets absorbed on the particulate matters and either float or sediment on the riverbed. The rate of biodegradation in soil ranges from 77 to 387 days depending on the soil type.Chrysene does not undergo hydrolysis due to the lack of hydrolyzable functional groups. However, it undergoes photochemical oxidations when exposed to the environment. Dihydrodiol is the common degradation product of chrysene. Half-life of degradation of chrysene, absorbed to soot particles and exposed to sunlight in air containing 10 ppm nitrogen oxides is 26 days. The National Research Council (NRC 1983) noted that the PAHs adsorbed to soot particles are more resistant to photochemical reactions than pure compounds.

비 호환성

Contact with strong oxidizers may cause fire and explosion hazard

폐기물 처리

Chrysene may be destroyed by permanganate oxidation, by high-temperature incinerator with scrubbing equipment; or by microwave plasma treatment.

크리센 준비 용품 및 원자재

원자재

준비 용품


크리센 공급 업체

글로벌( 220)공급 업체
공급자 전화 팩스 이메일 국가 제품 수 이점
TianYuan Pharmaceutical CO.,LTD
+86-755-23284190 13684996853
+86-755-23284190 sales@tianpharm.com CHINA 305 58
Springchem New Material Technology Co.,Limited
+8613917661608 +86-021-62885108
info@spring-chem.com China 2065 57
Henan DaKen Chemical CO.,LTD.
+86-371-66670886
info@dakenchem.com China 21032 58
Shanghai Zheyan Biotech Co., Ltd.
18017610038
zheyansh@163.com CHINA 3623 58
career henan chemical co
+86-371-86658258
sales@coreychem.com CHINA 29961 58
City Chemical LLC
2039322489
203.937.8400 sales@citychemical.com United States 97 58
Accela ChemBio Inc.
(+1)-858-699-3322
(+1)-858-876-1948 info@accelachem.com United States 19969 58
Chongqing Chemdad Co., Ltd
+86-13650506873
sales@chemdad.com CHINA 37282 58
Zhuozhou Wenxi import and Export Co., Ltd
+8613111626072 (WhatsApp)
Wechat: +8613111626072 Wickr me: waynehu zzwenxi@126.com CHINA 13187 58
Richest Group Ltd
18017061086
oled@richest-group.com CHINA 5606 58

크리센 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved