ChemicalBook > Product Catalog >Inorganic chemistry >Elementary substance >Phosphorus

Phosphorus

Phosphorus Suppliers list
Company Name: Henan DaKen Chemical CO.,LTD.
Tel: +86-371-55531817
Email: info@dakenchem.com
Products Intro: Product Name:Phosphorus
CAS:7723-14-0
Purity:99% Package:100g,500g,1kg,5kg,10kg
Company Name: Henan Tianfu Chemical Co.,Ltd.
Tel: 0371-55170693
Email: info@tianfuchem.com
Products Intro: CAS:7723-14-0
Purity:99% Package:500G;1KG;5KG;25KG
Company Name: Mainchem Co., Ltd.
Tel: +86-0592-6210733
Email: sales@mainchem.com
Products Intro: Product Name:Phosphorus
CAS:7723-14-0
Company Name: Hefei TNJ Chemical Industry Co.,Ltd.
Tel: 86-0551-65418684 18949823763
Email: info@tnjchem.com
Products Intro: Product Name:Phosphorus
CAS:7723-14-0
Purity:99.9% Package:1KG;5USD
Company Name: Shanghai Aladdin Bio-Chem Technology Co.,LTD  Gold
Tel: 021-20337333/400-620-6333
Email: sale@aladdin-e.com
Products Intro: Product Name:Phosphorus red
CAS:7723-14-0
Purity:AR,98.5% Package:78RMB/500G
Phosphorus Basic information
Outline Physical Properties Production Reactions Hazards
Product Name:Phosphorus
Synonyms:PHOSPHORUS, ORGANIC AAS STANDARD SOLUTION;PHOSPHORUS STANDARD;PHOSPHORUS STANDARD, (AS PHOSPHATE);PHOSPHORUS STANDARD SOLUTION;PHOSPHORUS PLASMA EMISSION SPECTROSCOPY STANDARD;PHOSPHORUS PLASMA EMISSION STANDARD;PHOSPHORUS, PLASMA STANDARD SOLUTION;PHOSPHORUS, RED
CAS:7723-14-0
MF:P
MW:30.97
EINECS:918-594-3
Product Categories:Inorganic Chemicals;Inorganics;Elemental PhosphorusMicro/Nanoelectronics;Catalysis and Inorganic Chemistry;Electronic Chemicals;Phosphorus Compounds;Pure Elements;Elemental Phosphorus;AA Standard SolutionsSpectroscopy;AAS;Matrix Selection;OtherAlphabetic;P;PER - POLASpectroscopy;chemical research;medicine grade;pharmaceutical intermediate;Reference/Calibration Standards;Single Solution;Standard Solutions
Mol File:7723-14-0.mol
Phosphorus Structure
Phosphorus Chemical Properties
Melting point 280 °C (white)(lit.)
Boiling point 280℃
density 2.34 g/mL at 25 °C(lit.)
vapor density 0.02 (vs air)
vapor pressure 0.03 mm Hg ( 21 °C)
Fp 30°C
storage temp. 2-8°C
solubility insoluble
form powder (red)
color Red-brown
OdorAcrid fumes when exposed to air
resistivity10 μΩ-cm, 20°C
Water Solubility insoluble
Merck 13,7433
Stability:Stable. Highly flammable. Incompatible with strong oxidizing agents, strong bases. Light and heat sensitive.
CAS DataBase Reference7723-14-0(CAS DataBase Reference)
NIST Chemistry ReferencePhosphorus atom(7723-14-0)
EPA Substance Registry SystemPhosphorus(7723-14-0)
Safety Information
Hazard Codes F,N,C,T+
Risk Statements 11-16-52/53-50-35-26/28-17
Safety Statements 7-43-61-43C-45-38-26-5-27-6
RIDADR UN 1338 4.1/PG 3
WGK Germany 2
RTECS TH3495000
10-21
Autoignition TemperatureWhite phosphorus: 29 °C
Red phosphorus: 260 °C
TSCA Yes
HazardClass 4.1
PackingGroup III
HS Code 28047000
Hazardous Substances Data7723-14-0(Hazardous Substances Data)
ToxicityLD50 oral (rat) 3 mg/kg
PEL (OSHA) 0.1 mg/m3
TLV-TWA (ACGIH) 0.02 ppm (0.1 mg/m3)
MSDS Information
ProviderLanguage
Phosphorus English
SigmaAldrich English
ACROS English
ALFA English
Phosphorus Usage And Synthesis
OutlineElemental phosphorus was discovered in 1669 by Hennig Brand. About two hundred years later James Readman developed a process for phosphorus recovery from phosphatic rocks using an electric furnace.
Phosphorus is one of the most widely distributed elements on earth. It is found as phosphate salts in nearly all igneous rocks and in sedimentary deposits and sea beds. Phosphorus occurs in more than three hundred minerals, usually associated with Ca, Mg, Fe, Sr, Al, Na, and several other metals, and with anions such as silicates, sulfates, oxides, hydroxides, and halides. Phosphorus is an essential element present in all living matter and is vital in biological and ecological processes. It occurs in DNA and other nucleic acids, and in bones.
Phosphorus is used in pyrotechnics, smoke bombs, incendiary shells, and safety matches. It also is used in organic syntheses, manufacture of phosphoric acid, phosphorus trichloride, phosphine, and other compounds.
Physical PropertiesElemental phosphorus in solid phase exists in three major allotropic forms: (1)white or yellow phosphorus that may occur in alpha or beta modification, (2) red phosphorus, and (3) black phosphorus.
White phosphorus is a white, soft, wax-like transparent mass which often acquires a yellow appearance due to impurities, especially traces of red phosphorus. It has a garlic-like odor. It is made up of cubic crystals, has a density 1.82 g/cm3, and melts at 44.1°C to a colorless or yellowish liquid. X-ray diffraction studies and 31P-NMR analysis indicate tetrahedral P4 molecules with an interatomic distance of 2.21Å , and the molecules are able to rotate freely in the crystals. When cooled below –76.9°C, the cubic alpha form converts to a hexagonal beta modification with a density 1.88 g/cm3. The beta form, unlike the alpha form, does not rotate freely in the crystal but has a fixed orientation of P4 molecules in the lattice.
Red phosphorus is obtained from white phosphorus by heating at 230 to 240°C, allowing complete conversion to occur in about 48 hours. Conversion is catalyzed by sulfur, iodine, and selenium. The red allotrope also slowly deposits from liquid phosphorus or from a solution of white phosphorus, the rate and yield depending on catalysts, temperature, light, and other factors. Red phosphorus exhibits various modifications. Three important ones are an amorphous form at ordinary temperatures and two crystalline modifications which include a triclinic form and a hexagonal or a tetragonal form that may prevail at higher temperatures. There also are a few more modifications, all of which may coexist, accounting for variability in physical properties of red phosphorus. The triclinic variety of red phosphorus is the most stable of all allotropes of phosphorus at ordinary temperatures. Red phosphorus possesses a density of 2.0 to 2.31 g/cm3 and melts at 590°C.
Black phosphorus is the third major allotropic form of phosphorus. It occurs in two forms, one is an amorphous modification having a laminar structure similar to graphite and the other is an orthorhombic crystalline form. The density of black phosphorus may vary between 2.20 to 2.69 g/cm3. Black phosphorus is obtained from white phosphorus by heating the latter at 220°C under an extremely high pressure of about 10,000 atm.
When solid phosphorus of any form—white, red, or black—is melted, it forms the same liquid phosphorus. This liquid has a density of 1.74 g/cm3 and viscosity 1.69 centipoise at 50°C. Liquid phosphorus boils at 280.5°C. Upon cooling, liquid phosphorus solidifies to only white phosphorus. Liquid phosphorus and its vapors consist of tetrahedral P4 molecules. The vapors, on rapid condensation, convert to white phosphorus.
While white and red phosphorus have high electrical resistivity, the black variety has a low resistivity of 0.71 ohm-cm at 0°C. Solubility also varies widely. White phosphorus is soluble in a number of organic solvents. It is very highly soluble in carbon disulfide, about 400 g/100 g solvent at 0°C and moderately soluble in benzene (~3.59 g/100g at 25°C) and exhibits lower solubility in ether (~1.5g/100g at 25°C). Red and black phosphorus are insoluble in organic solvents. White phosphorus is a flammable solid, igniting spontaneously in air at 35°C. Red and black phosphorus are nonflammable. The latter is difficult to ignite.
ProductionWhite phosphorus usually is obtained by heating some form of calcium phosphate with quartz and coke, usually in an electric furnace. The reactions may be written in two steps as follows:
Ca3(PO4)2 + 3SiO2 → 3CaSiO3 + P2O5
P2O5 + 5C → 2P + 5 CO
In commercial scale, white phosphorus is manufactured mostly from the mineral fluorapatite by heating with silica and coke in an electric-arc or blast furnace at a temperature of 1,200 to 1,500°C. An overall reaction may be represented in the following equation.
4Ca5F(PO4)3 + 18SiO2 + 30C → 18CaO • SiO2 • 2CaF2 + 30CO↑ + 3P4↑
(slag) White phosphorus also can be produced by a wet process using phosphoric acid, a process that was practiced historically in commercial production. In this method the starting material, phosphoric acid, usually is prepared in large vats by reacting phosphate rock with sulfuric acid:
Ca5F(PO4)3 + 5H2SO4 + 10H2O → 3H3PO4 + 5CaSO4 • 10H2O + HF
Phosphoric acid is filtered out of the mixture. It is then mixed with coke, charcoal or sawdust; dried; charred; and finally heated to white heat in a fireclay retort:
H3PO4 + 16C → P4 + 6H2 + 16CO
The vapor is condensed to obtain white phosphorus.
As stated earlier, all other forms of phosphorus can be made from white phosphorus. Thus, heating white phosphorus first at 260°C for a few hours and then at 350°C gives red phosphorus. The conversion is exothermic and can become explosive in the presence of iodine as a catalyst. When a solution of white phosphorus in carbon disulfide or phosphorus tribromide is irradiated the scarlet red variety is obtained.
Black phosphorus allotrope is produced by heating white phosphorus at 220°C under 12,000 atm pressure. The conversion is initially slow, but can became fast and explosive after an induction period.
White phosphorus is stored under water as it ignites in air. It may be cut into appropriate sizes only under water.
ReactionsReactivity of white phosphorus is much greater than red or black phosphorus. Black phosphorus is the least reactive of all phosphorus allotropes. White phosphorus ignites in air spontaneously. When placed on a paper, the paper catches fire after a short delay. It catches fire at about 35°C. At room temperature white phosphorus glows in the dark on exposure to air emitting faint green light. Such chemiluminescence is attributed to the oxidation of P4 molecules in the vapor phase in contact with the surface of solid phosphorus:
P4(g) + 5O2(g) → P4O10(s) + light
The mechanism involves a complicated oxidative process that occurs only at certain partial pressures of oxygen and not in pure oxygen at atmospheric pressure, nor in vacuum.
Red phosphorus ignites when struck with a hammer blow or when heated at 260°C. Black phosphorus ignites in contact with flame. White phosphorus reacts spontaneously with halogens at ordinary temperatures forming phosphorus trihalides. However, in excess halogen the product is phosphorus pentahalide:
P4(s) + 6Cl2(g) → 4PCl3 (l)
P4 (s) + 10Cl2 (g) → 4PCl5 (s)
White phosphorus reacts with sulfur on warming forming phosphorus trisulfide:
P4(s) + 6S(s) → 2P2S3 (s)
White phosphorus reacts with strong aqueous alkali solution forming hypophosphite with evolution of phosphine, PH3:
P4 + 3KOH + 3H2O → 3KH2PO2 + PH3 ↑
P4(s) + 6Cl2(g) → 4PCl3 (l)
P4 (s) + 10Cl2 (g) → 4PCl5 (s)
White phosphorus reacts with sulfur on warming forming phosphorus trisulfide:
P4(s) + 6S(s) → 2P2S3 (s)
White phosphorus reacts with strong aqueous alkali solution forming hypophosphite with evolution of phosphine, PH3:
P4 + 3KOH + 3H2O → 3KH2PO2 + PH3 ↑
P4 + 6Ca → 2Ca3P2
Reactions with alkali metals occur under warm conditions producing the corresponding metal phosphides:
P4 + 12Na → 4Na3P
HazardsWhite phosphorus is a highly toxic substance, both an acute and chronic toxicant. Chronic exposure to it’s vapors can cause “phossy jaw;” necrosis of the jaw. Other symptoms are bronchopneumonia, bone changes, anemia and weight loss, Ingestion can cause nausea, vomiting, abdominal pain, diarrhea and coma. Skin contact can cause severe burns. In the eye it damages vision. Red phosphorus is much less toxic than its white allotrope. Its fumes, when burned, are highly irritating. White phosphorus is a flammable solid, igniting spontaneously when exposed to air.
DescriptionWhite or yellow white phosphorus is a yellow waxy or colourless, transparent, volatile crystalline solid, waxy appearance with a garlic-like odour. On exposure to light, it darkens and ignites in air. It is also called yellow phosphorus colour because of impurities. White phosphorus does not occur naturally but is manufactured from phosphate rocks. It is insoluble in water, slightly soluble in benzene, ethanol, and chloroform, and is soluble in carbon disulphide. White phosphorus reacts rapidly with oxygen, easily catching fire at temperatures 10°C–15°C above room temperature. White phosphorus is used by the military in various types of ammunition and to produce smoke for concealing troop movements and identifying targets. It is also used by industry to produce phosphoric acid and other chemicals for use in fertilisers, food additives, and cleaning compounds. Small amounts of white phosphorus were used in the past in pesticides and fireworks.White phosphorus is used mainly for producing phosphoric acid and other chemicals. These chemicals are used to make fertilisers, additives in foods and drinks, cleaning compounds, and other products. In the military, white phosphorus is used in ammunitions such as mortar and artillery shells, and grenades.
Chemical Propertiesreddish-brown powder
HistoryDiscovered in 1669 by Brand, who prepared it from urine. Phosphorus exists in four or more allotropic forms: white (or yellow), red, and black (or violet). White phosphorus has two modifications: α and β with a transition temperature at –3.8°C. Never found free in nature, it is widely distributed in combination with minerals. Twenty-one isotopes of phosphorus are recognized. Phosphate rock, which contains the mineral apatite, an impure tricalcium phosphate, is an important source of the element. Large deposits are found in the Russia, China, Morocco, and in Florida, Tennessee, Utah, Idaho, and elsewhere. Phosphorus in an essential ingredient of all cell protoplasm, nervous tissue, and bones. Ordinary phosphorus is a waxy white solid; when pure it is colorless and transparent. It is insoluble in water, but soluble in carbon disulfide. It takes fire spontaneously in air, burning to the pentoxide. It is very poisonous, 50 mg constituting an approximate fatal dose. Exposure to white phosphorus should not exceed 0.1 mg/m3 (8-hour time-weighted average — 40- hour work week). White phosphorus should be kept under water, as it is dangerously reactive in air, and it should be handled with forceps, as contact with the skin may cause severe burns. When exposed to sunlight or when heated in its own vapor to 250°C, it is converted to the red variety, which does not phosphoresce in air as does the white variety. This form does not ignite spontaneously and it is not as dangerous as white phosphorus. It should, however, be handled with care as it does convert to the white form at some temperatures and it emits highly toxic fumes of the oxides of phosphorus when heated. The red modification is fairly stable, sublimes with a vapor pressure of 1 atm at 417°C, and is used in the manufacture of safety matches, pyrotechnics, pesticides, incendiary shells, smoke bombs, tracer bullets, etc. White phosphorus may be made by several methods. By one process, tricalcium phosphate, the essential ingredient of phosphate rock, is heated in the presence of carbon and silica in an electric furnace or fuel-fired furnace. Elementary phosphorus is liberated as vapor and may be collected under water. If desired, the phosphorus vapor and carbon monoxide produced by the reaction can be oxidized at once in the presence of moisture to produce phosphoric acid, an important compound in making super-phosphate fertilizers. In recent years, concentrated phosphoric acids, which may contain as much as 70 to 75% P2O5 content, have become of great importance to agriculture and farm production. World-wide demand for fertilizers has caused record phosphate production. Phosphates are used in the production of special glasses, such as those used for sodium lamps. Bone-ash, calcium phosphate, is also used to produce fine chinaware and to produce monocalcium phosphate used in baking powder. Phosphorus is also important in the production of steels, phosphor bronze, and many other products. Trisodium phosphate is important as a cleaning agent, as a water softener, and for preventing boiler scale and corrosion of pipes and boiler tubes. Organic compounds of phosphorus are important. Amorphous (red) phosphorus costs about $70/kg (99%).
General DescriptionA white or yellow colored semi-liquid. Transported at high temperatures. Insoluble in water and denser than water. Contact may cause burns to skin, eyes, and mucous membranes. May be toxic by ingestion, inhalation and skin absorption. May ignite upon exposure to air. Used to make other chemicals.
Air & Water ReactionsWhen exposed to air emits a green light and gives off white fumes. Ignites at 30°C in moist air, higher temperatures are required for ignition in dry air [Merck 11th ed. 1989]. The reactivity of phosphorus with oxygen or air depends on the allotrope of phosphorus involved and the conditions of contact, white (yellow) phosphorus being by far more reactive. White phosphorus readily ignites in air if warmed, finely divided, or under conditions where the slow oxidative isotherm cannot be dissipated. Contact with finely divided charcoal or lampblack promotes ignition, probably by the absorbed oxygen. Contact with amalgamated aluminum also promotes ignition [Mellor 1940 and 1971].
Reactivity ProfileWHITE PHOSPHORUS reacts with air (fire, acidic solution); sulfur and oxidants (fire, explosion). Bromine trifluoride reacts similarly with arsenic, boron, bromine, iodine, phosphorus, and sulfur [Mellor 2:113. 1946-47]. Bromoazide explodes on contact with antimony, arsenic, phosphorus, silver foil, or sodium. Red phosphorus reacts in the cold with selenium oxychloride evolving light and heat; white phosphorus reacts explosively [Mellor 10:906. 1946-47]. When thorium is heated with phosphorus, they unite with incandescence [Svenska Akad. 1829. p. 1].
Health HazardFire will produce irritating, corrosive and/or toxic gases. TOXIC; ingestion of substance or inhalation of decomposition products will cause severe injury or death. Contact with substance may cause severe burns to skin and eyes. Some effects may be experienced due to skin absorption. Runoff from fire control may be corrosive and/or toxic and cause pollution.
Health HazardWhite phosphorus is a highly toxic substance by all routes of exposure. Contact of the solid with the skin produces deep painful burns, and eye contact can cause severe damage. Ingestion of phosphorus leads (after a delay of a few hours) to symptoms including nausea, vomiting, belching, and severe abdominal pain. Apparent recovery may be followed by a recurrence of symptoms. Death may occur after ingestion of 50 to 100 mg due to circulatory, liver, and kidney effects. Phosphorus ignites and burns spontaneously when exposed to air, and the resulting vapors are highly irritating to the eyes and respiratory tract.
Red phosphorus is much less toxic than the white allotrope; however, samples of red phosphorus may contain the white form as an impurity. Early signs of chronic systemic poisoning by phosphorus are reported to include anemia, loss of appetite, gastrointestinal distress, chronic cough, a garlic-like odor to the breath, and pallor. A common response to severe chronic poisoning is damage of the jaw (''phossy jaw") and other bones. Phosphorus has not been reported to show carcinogenic effects in humans.
Fire HazardExtremely flammable; will ignite itself if exposed to air. Burns rapidly, releasing dense, white, irritating fumes. Substance may be transported in a molten form. May re-ignite after fire is extinguished. Corrosive substances in contact with metals may produce flammable hydrogen gas. Containers may explode when heated.
Fire HazardWhite phosphorus ignites spontaneously upon contact with air, producing an irritating, dense white smoke of phosphorus oxides. Use water to extinguish phosphorus fires.
Safety ProfileHuman poison by ingestion. Experimental poison by ingestion and subcutaneous routes. Experimental reproductive effects. Human systemic effects by ingestion: cardiomyopathy, cyanosis, nausea or vomiting, sweating. Toxic quantities have an acute effect on the liver and can cause severe eye damage. Inhalation can cause photophobia with myosis, dilation of the pupils, retinal hemorrhage, congestion of the blood vessels, and, rarely, an optic neuritis. Chronic exposure by inhalation or ingestion can cause anemia, gastrointestinal effects, and brittleness of the long bones, leading to spontaneous fractures. The most common symptom, however, of chronic phosphorus poisoning is necrosis of the jaw (phossyjaw). More reactive than red phosphorus. Dangerous fire hazard when exposed to heat, flame, or by chemical reaction with oxidtzers. Igmtes spontaneously in air. Very reactive. If combustion occurs in a confined space, it will remove the oxygen and cause asphyxiation. Dangerous explosion hazard by chemical reaction with: alkaline hydroxides, NH4NO3, SbF5, Ba(BrO3)2, Be, Bl3, Ca(BrO3)2, Mg(BrO3)2, K(BrO3), NaBrO3, Zn(BrO3)2, Br2, halogens, BrF3, BrN3, (chlorates of Ba, Ca, Mg, K, Na, Zn), (iodates of Ba, Ca, Mg, K, Na, Zn), Ce, Cs,CsHC2, CS3N, (charcoal + air), ClO2, (Ch + heptane), Cl0, ClF3, ClO3, chlorosulfonic acid, Cr03, Cr(OCl)2, Cu, NCl, IBr, ICl, IFj, Fe, La, PbO2, Li, LizC2, Li6CS, Mg(ClO4)z, Mn, HgO, HgNO3, Nd, Ni, nitrates, NBr, N02, NBr3, NCh, NOF, FN02, O2, performic acid, Pt, K, KOH, K3N, I(Mn04, K2O2, Rb, RbHC2, Se2Cl2, SeOCl2, SeOF2, SeF4, AgNO3, Ag20, Na, Na2C2, NaClO2, NaOH, Na2O2, S, so3, H2SO4, Th, VOCl2, Zr, peroxyformic acid, chloro sulfuric acid, halogen azides, hexalithum dtshcide. Can react vigorously with oxidtzing materials. To fight fire, use water. Used in fertilizers, tracer bullets, incendiaries manufacturing, rat poison, and gas analysis. When heated to decomposition it emits highly toxic fumes of POx. See also PHOSPHORUS (red).
storageWork with white phosphorus should be conducted in a fume hood to prevent exposure by inhalation, and splash goggles and impermeable gloves should be worn at all times to prevent eye and skin contact. Phosphorus should be stored under water in secondary containers in areas separate from oxidizing agents and other incompatible substances.
Purification MethodsPurify white phosphorus by melting it under dilute H2SO4—dichromate (possible carcinogen) mixture and allow to stand for several days in the dark at room temperature. It remains liquid, and the initial milky appearance due to insoluble, oxidisable material gradually disappears. The phosphorus can then be distilled under vacuum in the dark [Holmes Trans Faraday Soc 58 1916 1962]. It sublimes in vacuo. Other methods of purification include extraction with dry CS2 followed by evaporation of the solvent, or washing with 6M HNO3, then H2O, and drying under vacuum. It ignites in air at ~50o, or by friction if dry. Store and cut it under H2O . POISONOUS.
IncompatibilitiesWhite phosphorus reacts with a number of substances to form explosive mixtures. For example, dangerous explosion hazards are produced upon reaction of phosphorus with many oxidizing agents, including chlorates, bromates, and many nitrates, with chlorine, bromine, peracids, organic peroxides, chromium trioxide, and potassium permanganate, with alkaline metal hydroxides (phosphine gas is liberated), and with sulfur, sulfuric acid, and many metals, including the alkali metals, copper, and iron.
Red phosphorus is much less reactive than the white allotrope but may ignite or react explosively with strong oxidizing agents.
Flammability and ExplosibilityWhite phosphorus ignites spontaneously upon contact with air, producing an irritating, dense white smoke of phosphorus oxides. Use water to extinguish phosphorus fires.
Red phosphorus is a flammable solid but does not ignite spontaneously on exposure to air. At high temperatures (-300 °C), red phosphorus is converted to the white form.
Waste DisposalExcess phosphorus and waste material containing this substance should be placed in an appropriate container, clearly labeled, and handled according to your institution's waste disposal guidelines.
Tag:Phosphorus(7723-14-0) Related Product Information
Phosphorus Phosphorus pentoxide ETHYL PHOSPHORODICHLORIDITE Dichlorophenylphosphine (4-bromophenyl)diphenylphosphine Diphenylphosphoryl azide Diethyl cyanomethylphosphonate 1,1'-Bis(diphenylphosphino)ferrocene BIS(2,2,2-TRICHLOROETHYL) PHOSPHOROCHLORIDATE TRIS(2-CHLOROETHYL) PHOSPHITE Phenyl dichlorophosphate TRIPHENYLPHOSPHINE DIBROMIDE Tris(2-chloroethyl) phosphate BIS(PENTAFLUOROPHENYL)PHENYLPHOSPHINE Chlorodiphenylphosphine (CYCLOPENTADIENYLIDENE)TRIPHENYLPHOSPHORANE DIETHYL 2-BROMOETHYLPHOSPHONATE BUTYL DICHLOROPHOSPHITE