ChemicalBook--->CAS DataBase List--->333-41-5

333-41-5

333-41-5 Structure

333-41-5 Structure
IdentificationMore
[Name]

Diazinon
[CAS]

333-41-5
[Synonyms]

ALFA-TOX(R)
BASUDIN
BASUDIN(R)
CEKUZINON
Dazzel,DBD
DIANON
DIANOZYL
DIAZINON
DIAZOL
G 24480(R)
NEOCIDOL
NUCIDOL(R)
O,O-DIETHYL-O-[2-ISOPROPYL-4-METHYL-6-PYRIMIDYL]PHOSPHOROTHIOATE
O,O-DIETHYL-O-(2-ISOPROPYL)-(4-METHYL-6-PYRIMIDYL)THIOPHOSPHATE
O,O-DIETHYL O-(2-ISOPROPYL-6-METHYL-4-PYRIMIDINYL)PHOSPHOROTHIOATE
O,O-Diethyl O-(6-methyl-2-(1-methylethyl)-4-pyrimidinyl) phosophorothioate
SAROLEX(R)
SPECTACIDE(R)
2-iso-Propyl-6-methyl-4-pyrimidylphosphoroth-ioicacidO,O’-diethylester
4-Pyrimidinol, 2-isopropyl-6-methyl-, O-ester with O,O-diethyl phosphorothioate
[EINECS(EC#)]

206-373-8
[Molecular Formula]

C4H4N2O
[MDL Number]

MFCD00036204
[Molecular Weight]

96.09
[MOL File]

333-41-5.mol
Chemical PropertiesBack Directory
[Appearance]

Diazinon is a combustible, colorless, oily liquid. Faint amine odor. Technical grade is pale to dark brown. Commercial formulations may use carrier solvents which can change the physical properties listed here.
[Melting point ]

>120°C (dec.)
[Boiling point ]

306°C
[density ]

1.117
[vapor pressure ]

1.2 x 10-2 Pa (25 °C)
[refractive index ]

nD20 1.4978-1.4981
[Fp ]

104.4 °C
[storage temp. ]

APPROX 4°C
[solubility ]

Chloroform: Slightly Soluble
[form ]

neat
[pka]

1.21±0.30(Predicted)
[Water Solubility ]

Slightly soluble. 0.004 g/100 mL
[Merck ]

13,3019
[BRN ]

273790
[Exposure limits]

OSHA PEL: TWA 0.1 mg/m3; ACGIH TLV: TWA 0.1 mg/m3.
[Stability:]

Moisture Sensitive
[CAS DataBase Reference]

333-41-5(CAS DataBase Reference)
[IARC]

2A (Vol. 112) 2017
[NIST Chemistry Reference]

Diazinone(333-41-5)
[EPA Substance Registry System]

333-41-5(EPA Substance)
Hazard InformationBack Directory
[Chemical Properties]

Diazinon is available as a colorless or dark brown liquid. It is sparingly soluble in water but very soluble in petroleum ether, alcohol, and benzene. Diazinon is used for the control of a variety of agricultural and household pests. These include pests in soil, on ornamental plants, fruit, vegetable, crops pests, and household pests like fl ies, fl eas, and cockroaches. Diazinon undergoes decomposition on heating above 120°C and produces toxic fumes, such as nitrogen oxides, phosphorous oxides, and sulfur oxides. It reacts with strong acids and alkalis with the possible formation of highly toxic tetra ethyl thiopyrophosphates. Diazinon is classifi ed as an RUP. Depending on the type of formulation, diazinon is classifi ed as toxicity class II, meaning moderately toxic, or toxicity class III, meaning slightly toxic.
[General Description]

Liquid; light to dark brown. Sinks in water. Commercial solutions can contain ethanol/xylene/acetone with a flash point in the range 82-105 °F
[Air & Water Reactions]

The neat compound is susceptible to oxidation and should be protected from prolonged exposure to air . Insoluble in water.
[Health Hazard]

Humans are exposed to diazinon during manufacture and professional applications. Diazinon causes poisoning with symptoms such as headache, dizziness, nausea, weakness, feelings of anxiety, vomiting, pupillary constriction, convulsions, respiratory distress or labored breathing, unconsciousness, muscle cramp, excessive salivation, respiratory failure, and coma.
[Health Hazard]

LIQUID: POISONOUS IF SWALLOWED. Irritating to skin and eyes.
[Potential Exposure]

roducers, formulators and applicators of this nonsystemic pesticide and acaricide. Diazinon is used in the United States on a wide variety of agricultural crops, ornamentals, domestic animals; lawns and gardens; and household pests.
[Fire Hazard]

Not flammable. POISONOUS GASES ARE PRODUCED WHEN HEATED. Oxides of sulfur and of phosphorus are generated in fires.
[First aid]

If this chemical gets into the eyes, remove any contact lenses at once and irrigate immediately for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts the skin, remove contaminated clothing and wash immediately with soap and water. Speed in removing material from skin is of extreme importance. Shampoo hair promptly if contaminated. Seek medical attention immediately. If this chemical has been inhaled, remove from exposure, begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. When this chemical has been swallowed, get medical attention. Give large quantities of water and induce vomiting. Do not make an unconscious person vomit. Effects may be delayed; medical observation is recommended.
[Shipping]

UN2783 Organophosphorus pesticides, solid, toxic, Hazard Class: 6.1; Labels: 6.1-Poisonous materials.
[Incompatibilities]

Reaction with nitrosating agents (e.g., nitrites, nitrous gases, nitrous acid) capable of releasing carci- nogenic nitrosamines. Hydrolyzes slowly in water and dilute acid. Reacts with strong acids and alkalis with possible forma- tion of highly toxic tetraethyl thiopyrophosphates. Incompatible with copper-containing compounds. Contact with oxidizers may cause the release of phosphorous oxides. Contact with strong reducing agents, such as hydrides; may cause the formation of flammable and toxic phosphine gas.
[Waste Disposal]

Diazinon is hydrolyzed in acid media about 12 times as rapidly as parathion, and at about the same rate as parathion in alkaline media. In excess water this compound yields diethylthiophosphoric acid and 2-isopropyl-4-methyl-6-hydroxypyrimidine. With insufficient water, highly toxic tetraethyl monothiopyropho- sphate is formed. Therefore, incineration would be a prefer- able ultimate disposal method with caustic scrubbing of the incinerator effluent . In accordance with 40CFR165, follow recommendations for the disposal of pesticides and pesticide containers. Must be disposed properly by follow- ing package label directions or by contacting your local or federal environmental control agency, or by contacting your regional EPA office.
[Uses]

A cholinesterase inhibitor; a nonsystemic organophosphate insecticide.
[Uses]

Diazinon is used to control a wide range of sucking and chewing insects and mites in a very wide range of crops and is also used as a veterinary ectoparasiticide.
[Uses]

insecticide, cholinesterase inhibitor
[Uses]

Insecticide.
[Uses]

Nonsystemic contact insecticide used against flies, aphids and spider mites in soil, fruit, vegetables and ornamentals.
[Definition]

ChEBI: A member of the class of pyrimidines that is pyrimidine carrying an isopropyl group at position 2, a methyl group at position 6 and a (diethoxyphosphorothioyl)oxy group at position 4.
[Agricultural Uses]

Insecticide, Acaricide: Diazinon is the most widely used pesticide by homeowners on lawns, and is one of the most widely used pesticide ingredients for application around the home and in gardens. It is used to control insects and grub worms. It is a nonsystemic organophosphate insecticide used to control cockroaches, silverfish, ants, and fleas in residential, non-food buildings. Bait is used to control scavenger yellow jackets in the western U.S. It is used on home gardens and farms to control a wide variety of sucking and leaf-eating insects. It is used on rice, fruit trees, sugarcane, corn, tobacco, potatoes and on horticultural plants, and is also an ingredient in pest strips. Diazinon has veterinary uses against fleas and ticks. It is available in dust, granules, seed dressings, wettable powder, and emulsifiable solution formulations. In 1988, there were 500 different products containing diazinon on the market, and used in such products as agricultural sprays and granules, animal ear tags, household sprays and dust and veterinary products. Not approved for use in EU countries. A U.S. EPA restricted Use Pesticide (RUP). The U.S. EPA initiated a program to phase out all non-agricultural uses of diazinon commencing in March, 2001. Many commercial outdoor uses of diazinon have been canceled or restricted to licensed pesticide applicators because of its known toxicity to birds and aquatic life. Diazinon is highly toxic to bees and very highly toxic to birds, fish and aquatic invertebrates. Diazinon was canceled for use on golf courses and sod farms in 1988 because of its high risk to birds
[Trade name]

AG-500®; AI3-19507®; ALFA-TOX®[C]; ANTIGAL®; ANTLAK®; BASUDIN®; BAZUDEN®; CASWELL No. 342®; DACUTOX®; DASSITOX®; DAZZEL®; DIAGRAN®; DIANON®; DIATERR-FOS®; DIAZAJET®; DIAZATOL®; DIAZIDE®; DIAZINON AG 500 WBC®; DIAZINONE®; DIAZITOL®; DIAZOL®; DICID®; DIMPYLATE®; DIPOFENE®; DIZIKTOL®; DIZINON®[C]; DRAWIZON®; DYMET®; DYZOL®); D.Z.N.®; EXODIN®; FEZUDIN®; FLYTROL®; G 301®; G-24480®; GALESAN®; GARDENTOX®; GEIGY 24480®; KAYAZINON®; KAYAZOL®; NEOCIDOL® (OIL); NEOCIDOL®; NIPSAN®; NUCIDOL®; OLEODIAZINON®; ROOT GUARD; SAROLEX®[C]; SPECTRACIDE®; SROLEX®; SUZON®
[Carcinogenicity]

Among 23,106 male applicators participating in the Agricultural Health Study who reported using diazinon, there was an increased risk with exposure to diazinon for lung cancer, leukemia, and all cancer sites combined, although the small number of cases observed makes these estimates unreliable .
[Environmental Fate]

Biological. Sethunathan and Yoshida (1973a) isolated a Flavobacterium sp. (ATCC 27551) from rice paddy water that metabolized diazinon as the sole carbon source. Diazinon was readily hydrolyzed to 2-isopropyl-4-methyl-6-hydroxypyrimidine under aerobic conditions but less rapidly under anaerobic conditions. This bacterium as well as enrichment cultures isolated from a diazinon-treated rice field mineralized the hydrolysis product to carbon dioxide (Sethunathan and Pathak, 1971; Sethunathan and Yoshida, 1973). Rosenberg and Alexander (1979) demonstrated that two strains of Pseudomonas grew on diazinon and produced diethyl phosphorothioate as the major end product. The rate of microbial degradation increased in the presence of an enzyme (parathion hydrolase), produced by a mixed culture of Pseudomonas sp. (Honeycutt et al., 1984).
Soil. Hydrolyzes in soil to 2-isopropyl-4-methyl-2-hydroxypyrimidine, diethylphosphorothioic acid, carbon dioxide (Getzin, 1967; Lichtenstein et al., 1968; Sethunathan and Yoshida, 1969; Sethunathan and Pathak, 1972; Bartsch, 1974; Wolfe et al., 1976; Somasundaram and Coats, 1991) and tetraethylpyrophosphate (Paris and Lewis, 1973). The half-life of diazinon in soil was observed to be inversely proportional to temperature and soil moisture content (Getzin, 1968). Seven months after diazinon was applied on a sandy loam (2 kg/ha), only 1% of the total applied amount remained and 10% was detected in a peat loam (Suett, 1971).
The reported half-life in soil is 32 days (Jury et al., 1987). Reported half-lives in soil following incubation of 10 ppm diazinon in sterile sand loam, sterile organic soil, nonsterile sandy loam and nonsterile organic soil are 12.5, 6.5, <1 and 2 weeks, respectively (Miles et al., 1979). The reported half-life of diazinon in sterile soil at pH 4.7 was 43.8 days (Sethunathan and MacRae, 1969). Major metabolites identified were diethyl thiophosphoric acid, 2-isopropyl-4-methyl-6-hydroxypyrimidine and carbon dioxide (Konrad et al., 1967). When soil is sterilized, the persistence of diazinon increased more so than changes in soil moisture, soil type or rate of application (Bro-Rasmussen et al., 1968). The halflives for diazinon in flooded soil incubated in the laboratory ranged from 4 to 17 days with an average half-life of 10 days (Sethunathan and MacRae, 1969; Sethunathan and Yoshida, 1969; Laanio et al., 1972). The mineralization half-life for diazinon in soil was 5.1 years (Sethunathan and MacRae, 1969; Sethunathan and Yoshida, 1969).
The half-lives of diazinon in a sandy loam, clay loam and an organic amended soil under nonsterile conditions were 66–1,496, 49–1,121 and 14–194 days, respectively, while under sterile conditions the half-lives were 57–1,634, 46–1,550 and 14–226 days, respectively (Schoen and Winterlin, 1987).
In a silt loam and sandy loam, reported Rf values were 0.86 and 0.88, respectively (Sharma et al., 1986).
Surface Water. In estuarine water, the half-life of diazinon ranged from 8.2 to 10.2 days (Lacorte et al., 1995).
Groundwater. According to the U.S. EPA (1986) diazinon has a high potential to leach to groundwater.
Plant. Diazinon was rapidly absorbed by and translocated in rice plants. Metabolites identified in both rice plants and a paddy soil were 2-isopropyl-4-methyl-6-hydroxypyrimidine (hydrolysis product), 2-(1¢-hydroxy-1¢-methyl)ethyl-4-methyl-6-hydroxypyrimidine and other polar compounds (Laanio et al., 1972). Oxidizes in plants to diazoxon (Ralls et al., 1966; Laanio et al., 1972; Wolfe et al., 1976) although 2-isopropyl-4-methyl- 6-pyrimidin-6-ol was identified in bean plants (Kansouh and Hopkins, 1968) and as a hydrolysis product in soil (Somasundaram et al., 1991) and water (Suffet et al., 1967). Five days after spraying, pyrimidine ring-labeled 14C-diazinon was oxidized to oxodiazinon which was then hydrolyzed to 2-isopropyl-4-methylpyrimidin-6-ol which in turn, was further metabolized to carbon dioxide (Ralls et al., 1966). Diazinon was transformed in field-sprayed kale plants to form hydroxydiazinon {O,O-diethyl-O-[2-(2¢-hydroxy-2¢-propyl)- 4-methyl-6-pyrimidinyl] phosphorothioate} which was not previously reported (Pardue et al., 1970).
[Metabolic pathway]

The main route of diazinon metabolism in soil, plants and animals is through cleavage of the P-O-pyrimidine group to yield 2-isopropyl-4- methyl-6-hydroxypyrimidine. As with most other phosphorothioates, loss of the pyrimidinyl function in mammalian metabolism probably occurs either through oxidative desulfuration of the thiono group, catalysed by microsomal mixed function oxidases, to give diazoxon followed by hydrolysis catalysed by an A-esterase, or via an oxidative mechanism catalysed by a mixed function oxidase acting directly on diazinon. In the first case the second product is diethyl phosphate and in the second, diethyl phosphorothioate (Yang et al., 1971). Further metabolism then leads to hydroxylation of the methyl and isopropyl groups on the pyrimidine ring. This oxidative metabolism may the act on the pyrimidinol, diazoxon or diazinon itself, the last of which seems to be important in mammalian and avian liver and gives rise to metabolites which still have anticholinesterase or latent anticholinesterase activity.
[Metabolism]

The main biodegradation pathway in mammals, plants, and soils is pyrimidinyl ester bond cleavage; the principal metabolites are diethyl phosphorothioate and diethyl phosphate. Degradation in the environment involves oxidation to diazoxon and hydrolysis.
[storage]

Color Code—Blue: Health Hazard/Poison: Storein a secure poison location. Store in tightly closed containers in a cool, well-ventilated area away from water, and oxidizers, such as peroxides, nitrates, permanganates,chlorates, and perchlorates.
[Degradation]

Diazinon(1) is stable at neutral pH but is slowly hydrolysed in alkaline solutions and rapidly at acidic pH values (PM). Hydrolysis products were identified as the pyrimidinol (2) and diethyl phosphorothioate (3) (PSD, 1991).
When diazinon was dissolved in a water/soil suspension and irradiated with UV light, Mansour et al. (1997) demonstrated that one of the products was iso-diazinon (4) formed via a thiono-thiolo rearrangement (see Scheme 1).
[Toxicity evaluation]

The acute oral LD50 for rats and mice are 1250 and 80–135 mg/kg. Inhalation LC50 (4 h) for rats is >2330 mg/m3 air. NOEL (2 yr) for rats is 0.06 mg/kg/d.
Safety DataBack Directory
[Hazard Codes ]

Xn;N,N,Xn,F
[Risk Statements ]

R22:Harmful if swallowed.
R50/53:Very Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment .
R36:Irritating to the eyes.
R20/21/22:Harmful by inhalation, in contact with skin and if swallowed .
R11:Highly Flammable.
[Safety Statements ]

S24/25:Avoid contact with skin and eyes .
S60:This material and/or its container must be disposed of as hazardous waste .
S61:Avoid release to the environment. Refer to special instructions safety data sheet .
S36:Wear suitable protective clothing .
S26:In case of contact with eyes, rinse immediately with plenty of water and seek medical advice .
S16:Keep away from sources of ignition-No smoking .
[RIDADR ]

UN 2783/2810
[WGK Germany ]

3
[RTECS ]

TF3325000
[HazardClass ]

6.1(b)
[PackingGroup ]

III
[HS Code ]

29335990
[Precautions]

Workers should avoid eye contact with diazinon, wear chemical safety glasses or goggles, protective clothing or equipment, wear waterproof boots, long-sleeved shirts, long pants, and a hat. Workers should avoid contamination of food and feed, wash thoroughly after handling and before eating or smoking. In fact, occupational workers should avoid eating, drinking, or smoking in areas of work with the chemical.
[Safety Profile]

Poison by ingestion, skin contact, subcutaneous, intravenous, and intraperitoneal routes. Mildly toxic by inhalation. Human systemic effects by ingestion: changes in motor activity, muscle weakness, and sweating. Experimental teratogenic and reproductive effects. A skin and severe eye irritant. Human mutation data reported. When heated to decomposition it emits very toxic fumes of NOx, POx, and SOx.
[Hazardous Substances Data]

333-41-5(Hazardous Substances Data)
[Toxicity]

LD50 in male, female rats (mg/kg): 250, 285 orally (Gaines)
Raw materials And Preparation ProductsBack Directory
[Raw materials]

Ethyl acetoacetate-->Methyl acetoacetate-->Diethyl chlorothiophosphate-->Quinalphos-->Isobutyronitrile-->Bis(2-dimethylaminoethyl) ether-->BUTYRAMIDINE-->2-ISOPROPYL-6-METHYL-4-PYRIMIDINOL-->Ancymidol-->6-Methylpyrimidine-->2,4-Pyridinedicarboxylic acid-->Sodium bicarbonate
[Preparation Products]

Isobutyric acid
Material Safety Data Sheet(MSDS)Back Directory
[msds information]

Diazinon(333-41-5).msds
Questions and Answers (Q&A)Back Directory
[Description]

Diazinon is a non-systemic organophosphate insecticide formerly used to control cockroaches, silverfish, ants, and fleas in residential, non-food buildings. Diazinon functions as the inhibitor of acetylcholinesterase (AChE), which breaks down the neurotransmitter acetylcholine (ACh) into [choline] and an acetate group. The inhibition of the AChE causes an abnormal accumulation of ACh in the synaptic cleft. However, recent studies have shown that diazinon and other kinds of organophosphate can cause neural toxicity through causing oxidative stress in the neural cells.
[References]

Uner, N, et al. "Effects of diazinon on acetylcholinesterase activity and lipid peroxidation in the brain of Oreochromis niloticus." Environmental Toxicology & Pharmacology 21.3(2006):241.
Shishido, Takashi, K. Usui, and J. I. Fukami. "Oxidative metabolism of diazinon by microsomes from rat liver and cockroach fat body." Pesticide Biochemistry & Physiology 2.1(1972):27-38.
Giordano, G, et al. "Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency." Toxicology & Applied Pharmacology 219.2-3(2007):181.
Spectrum DetailBack Directory
[Spectrum Detail]

Diazinon(333-41-5)MS
Diazinon(333-41-5)1HNMR
Diazinon(333-41-5)13CNMR
Diazinon(333-41-5)IR1
Well-known Reagent Company Product InformationBack Directory
[Sigma Aldrich]

333-41-5(sigmaaldrich)
333-41-5 suppliers list
Company Name: airuikechemical co., ltd.
Tel: +undefined86-15315557071 , +undefined86-15315557071
Website: airuikechemical.com/
Company Name: Henan Tianfu Chemical Co.,Ltd.
Tel: +86-0371-55170693 +86-19937530512 , +86-19937530512
Website: https://www.tianfuchem.com/
Company Name: Hefei TNJ Chemical Industry Co.,Ltd.
Tel: +86-0551-65418679 +86-18949832763 , +86-18949832763
Website: http://www.tnjchem.com
Company Name: career henan chemical co
Tel: +86-0371-86658258
Website: https://www.coreychem.com/
Company Name: Klong Industrial Co., Ltd
Tel: 0086-519-68231162
Website: www.chemicalbook.com/ShowSupplierProductsList30929/0.htm
Company Name: Hebei Guanlang Biotechnology Co., Ltd.
Tel: +86-19930503282 , +86-19930503282
Website: https://www.chemicalbook.com/manufacturer/crovell/
Company Name: Xiamen AmoyChem Co., Ltd
Tel: +86-592-6051114 +8618959220845 , +8618959220845
Website: http://www.amoychem.com/
Company Name: Hubei xin bonus chemical co. LTD
Tel: 86-13657291602
Website: www.chemicalbook.com/ShowSupplierProductsList1549548/0.htm
Company Name: Chongqing Chemdad Co., Ltd
Tel: +86-023-61398051 +8613650506873 , +8613650506873
Website: http://www.chemdad.com/
Company Name: CONIER CHEM AND PHARMA LIMITED
Tel: +8618523575427 , +8618523575427
Website: http://www.conier.com/
Company Name: TargetMol Chemicals Inc.
Tel: +1-781-999-5354 +1-00000000000 , +1-00000000000
Website: https://www.targetmol.com/
Company Name: Hefei TNJ Chemical Industry Co.,Ltd.
Tel: 0551-65418671
Website: https://www.tnjchem.com
Company Name: ANHUI WITOP BIOTECH CO., LTD
Tel: +8615255079626 , +8615255079626
Website: www.chemicalbook.com/showsupplierproductslist418627/0_en.htm
Company Name: AFINE CHEMICALS LIMITED
Tel: 0571-85134551
Website: www.afinechem.com/index.html
Company Name: Wuhan Fortuna Chemical Co., Ltd
Tel: +86-27-59207850 +86-13986145403 , +86-13986145403
Website: www.fortunachem.com/
Company Name: Baoji Guokang Bio-Technology Co., Ltd.
Tel: 0917-3909592 13892490616 , 13892490616
Website: http://www.gk-bio.com
Company Name: Baoji Guokang Healthchem co.,ltd
Tel: +8615604608665 15604608665 , 15604608665
Website: www.gk-bio.com
Company Name: Hangzhou MolCore BioPharmatech Co.,Ltd.
Tel: +86-057181025280; +8617767106207 , +8617767106207
Website: https://www.molcore.com/
Tags:333-41-5 Related Product Information
143390-89-0 2921-88-2 67-63-0 99-76-3 105-53-3 78-40-0 7087-68-5 84-66-2 60-29-7 56980-93-9 74-83-9 3438-46-8 5053-43-0 111-84-2 6622-92-0 333-41-5