Chinese Japanese Germany Korea


Piperidine structure
Chemical Name:
PIP;PPR;Hexazane;Cypentil;Piperdine;Piperidin;FEMA 2908;PIPERIDINE;PIPERIDINE GR;perhydroazine
Molecular Formula:
Formula Weight:
MOL File:

Piperidine Properties

Melting point:
-11 °C
Boiling point:
106 °C(lit.)
0.930 g/mL at 20 °C
vapor density 
3 (vs air)
vapor pressure 
23 mm Hg ( 20 °C)
refractive index 
n20/D 1.452(lit.)
Flash point:
16 °C(lit.)
storage temp. 
Store in dark!
miscible in water and alcohol; soluble in ether, acetone, benzene and chloroform maximum allowable concentration: not established; more toxic, irritating and volatile than pyridine (Reinhardt and Brittelli 1981).
11.123(at 25℃)
12.6 (100g/l, H2O, 20°C)
explosive limit
Water Solubility 
Air Sensitive
JECFA Number
Stable. Highly flammable. Incompatible with strong oxidizing agents, strong acids, organic acids, water. Vapours may flow along surfaces to a distant source of ignition.
CAS DataBase Reference
110-89-4(CAS DataBase Reference)
NIST Chemistry Reference
EPA Substance Registry System
  • Risk and Safety Statements
  • Hazard and Precautionary Statements (GHS)
  • NFPA
Hazard Codes  T,F
Risk Statements  61-10-20/21-34-23/24-11-52-24-20/22
Safety Statements  53-16-26-36/37/39-45-27
RIDADR  UN 3286 3/PG 2
WGK Germany  3
RTECS  TM3500000
Autoignition Temperature 320 °C
HazardClass  8
PackingGroup  I
HS Code  29333210
Hazardous Substances Data 110-89-4(Hazardous Substances Data)
Toxicity LD50 orally in rats: 0.52 ml/kg (Smyth)
Signal word: Danger
Hazard statements:
Code Hazard statements Hazard class Category Signal word Pictogram P-Codes
H225 Highly Flammable liquid and vapour Flammable liquids Category 2 Danger P210,P233, P240, P241, P242, P243,P280, P303+ P361+P353, P370+P378,P403+P235, P501
H311 Toxic in contact with skin Acute toxicity,dermal Category 3 Danger P280, P302+P352, P312, P322, P361,P363, P405, P501
H314 Causes severe skin burns and eye damage Skin corrosion/irritation Category 1A, B, C Danger P260,P264, P280, P301+P330+ P331,P303+P361+P353, P363, P304+P340,P310, P321, P305+ P351+P338, P405,P501
H331 Toxic if inhaled Acute toxicity,inhalation Category 3 Danger P261, P271, P304+P340, P311, P321,P403+P233, P405, P501
Precautionary statements:
P210 Keep away from heat/sparks/open flames/hot surfaces. — No smoking.
P303+P361+P353 IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower.
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuerinsing.
P405 Store locked up.

NFPA 704

Diamond Hazard Value Description
3 0
Health   3 Short exposure could cause serious temporary or moderate residual injury (e.g. liquid hydrogen, sulfuric acid, calcium hypochlorite, hexafluorosilicic acid)
Flammability   3 Liquids and solids (including finely divided suspended solids) that can be ignited under almost all ambient temperature conditions . Liquids having a flash point below 22.8 °C (73 °F) and having a boiling point at or above 37.8 °C (100 °F) or having a flash point between 22.8 and 37.8 °C (73 and 100 °F). (e.g. gasoline, acetone)
Instability   0 Normally stable, even under fire exposure conditions, and is not reactive with water (e.g. helium,N2)

(NFPA, 2010)

Piperidine price

Manufacturer Product number Product description CAS number Packaging Price Updated Buy

Piperidine Chemical Properties,Uses,Production

Chemical Properties

Clear or slightly yellow liquid

Chemical Properties

Piperidine is a clear, colorless liquid. Pepper, ammonia or amine odor.

Chemical Properties

Piperidine is a strong base (pKb = 2.88) that reacts vigorously with oxidizing materials, is easily ignited, and forms explosive vapor concentrations at room temperature. When heated to decomposition it gives off toxic fumes of NOx (Sax 1984). It behaves like an aliphatic secondary amine and can form complexes with salts of heavy metals (HSDB 1988).


Piperidine occurs at low levels in a variety of food products (Neurath et al 1977), including baked ham (0.2 p.p.m.), milk (0.11 p.p.m.) coffee (1 p.p.m. dry) (Singer and Lijinsky 1976) and canned fish (Tanikawa and Motohiro 1960). It is also found in black pepper (Windholz 1983), hemp (Obata and Ishikawa 1960), hemlock (Cromwell 1956) and tobacco (Furia and Bellanca 1975). Piperidine is a natural constituent of skin (Sax and Lewis 1987), human urine (Von Euler 1944), brain (Honegger and Honegger 1960) and cerebrospinal fluid (Perry et al 1964). Humans excrete about 3-20 mg/d in the urine (Reinhardt and Britelli 1981).


It is used in organic synthesis, especially inthe preparation of many crystalline derivativesof aromatic nitro compounds.


Fits Applied Biosystems 431 and 433A peptide synthesizers.


Piperidine is an organic heterocyclic amine widely used as building block and reagent in the synthesis of organic compounds including pharmaceuticals.


ChEBI: An azacycloalkane that is cyclohexane in which one of the carbons is replaced by a nitrogen. It is a metabolite of cadaverine, a polyamine found in the human intestine.

Production Methods

Piperidine is usually prepared by the electrolytic reduction of pyridine. It may also be obtained by heating piperidine with alcoholic KOH or by the cyclization of 1,5-diaminopentane hydrochloride (Windholz 1983). U.S. production in 1983 was approximately 606,000 pounds (HSDB 1988). Commercial piperidine is supplied in two grades, 95 and 98 percent pure (Sax and Lewis 1987).


piperidine: A saturated heterocycliccompound having a nitrogen atom ina six-membered ring, C5H11N; r.d.0.86; m.p. –7°C; b.p. 106°C. The structureis present in many alkaloids

brand name

Cypentil (Abbott).

General Description

A clear colorless liquid with a pepper-like odor. Less dense than water, but miscible in water. Will float on water. Flash point 37°F. Melting point -15.8°F (-9°C). Boiling point 222.8°F (106°C). May severely irritate skin and eyes. May be toxic by ingestion and inhalation. Vapors heavier than air. Used to make rubber and as a solvent.

Air & Water Reactions

Highly flammable. Miscible in water.

Reactivity Profile

1-Oxa-4-azacyclohexane neutralizes acids in exothermic reactions to form salts plus water. May be incompatible with isocyanates, halogenated organics, peroxides, phenols (acidic), epoxides, anhydrides, and acid halides. Flammable gaseous hydrogen may be generated in combination with strong reducing agents, such as hydrides.

Health Hazard

Strong local irritant and may cause permanent injury after short exposure to small amounts. Ingestion may involve both irreversible and reversible changes. 30 to 60 mg/kg may cause symptoms in humans.

Health Hazard

Piperidine is a highly toxic compound. Theacute oral toxicity is high in many species oftest animals. The oral LD50 values in miceand rabbits are 30 and 145 mg/kg, respectively(NIOSH 1986). The liquid is moderatelytoxic by skin absorption. Inhalationtoxicity in experimental animals was low,however. A 4-hour exposure to 4000 ppmwas lethal to rats. Piperidine is corrosive toskin. Contact with eyes can produce severeirritation.

Health Hazard

An irritation threshold of 26 p.p.m. has been reported from studies on human volunteers (Bazarova and Migukina 1975). Levels of 2 to 5 p.p.m. in air have been recorded during the transfer of piperidine from drums in a semi-closed system. At this level, the vapors were intolerable but no irritation was observed (ANON 1982). In an accidental case of skin exposure, third-degree burns developed after only 3 min of skin contact (Linch 1965). Piperidine has a pronounced emetic effect in humans. When administered to schizophrenic patients at doses of 1 to 6 g/d, it was shown to cause nausea and a subjective sense of well being (Giacobini 1976; Tasher et al 1960). The primary, but low-level, means of human exposure, however, is from the natural piperidine content of foods (HSDB 1988).

Fire Hazard

1-Oxa-4-azacyclohexane evolves explosive concentrations of vapor at normal room temperatures. When heated to decomposition, 1-Oxa-4-azacyclohexane emits highly toxic fumes of nitrogen oxides. Dangerous, when exposed to heat, flame, or oxidizers. Avoid 1-Perchloryl1-Oxa-4-azacyclohexane and oxidizing materials. 1-Oxa-4-azacyclohexane is a reactive compound and forms complexes with the salts of heavy metals. 1-Oxa-4-azacyclohexane evolves explosive concentrations of vapor at normal room temperatures. Keep away from igniting sources and heat.

Industrial uses

Piperidine is used as a solvent, a curing agent for rubber and epoxy resins, a catalyst in silicone esters, an intermediate in organic synthesis and as a complexing agent (HSDB 1988; Reinhardt and Britelli 1981). It is a trace constituent in oils and fuels (Sax and Lewis 1987). It is used in the manufacture of local anesthetics, analgesics and other pharmaceuticals, and also for wetting agents and germicides (Gehring 1983). It is also used as a flavor additive in soups, meats, condiments, baked goods, candy and non-alcoholic beverages at 0.05-5.0 p.p.m. (Furia and Bellanca 1975).

Safety Profile

Poison by ingestion, skin contact, and intraperitoneal routes. Moderately toxic by subcutaneous route. Mildly toxic by inhalation. An experimental teratogen. Experimental reproductive effects by inhalation. A skin irritant. Mutation data reported. A very dangerous fire hazard when exposed to heat, flame, or oxidizers. Can react vigorously with oxidzing materials. To fight fire, use alcohol foam, CO2, dry chemical. Explodes on contact with 1- perchloryl-piperidme, dqanofurazan, N- nitrosoacetadde. When heated to decomposition it emits highly toxic fumes of NOx. Used in agriculture and pharmaceuticals, and as an intermediate for rubber accelerators. Used in production of drugs of abuse.

Potential Exposure

Piperidine is used in agriculture and pharmaceuticals; intermediate for rubber accelerators; as a solvent; as a curing agent for rubber and epoxy resins; catalyst for condensation reactions; as an ingredient in oils and fuels; complexing agent; manufacture of local anesthetics; in analgesics; pharmaceuticals, wetting agents; and germicides; synthetic flavoring. Not registered as a pesticide in the Unied States.

First aid

If this chemical gets into the eyes, remove any contact lenses at once and irrigate immediately for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts the skin, remove contaminated clothing and wash immediately with soap and water. Seek medical attention immediately. If this chemical has been inhaled, remove from exposure, begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. When this chemical has been swallowed, get medical attention. Give large quantities of water and induce vomiting. Do not make an unconscious person vomit. Medical observation is recommended for 2448 hours after breathing overexposure, as pulmonary edema may be delayed. As first aid for pulmonary edema, a doctor or authorized paramedic may consider administering a drug or other inhalation therapy.


Piperidine is readily absorbed through the gastrointestinal tract, skin and lungs (HSDB 1988). In hens, 35 to 70% of an injected dose is rapidly excreted unchanged in the urine (Williams 1959; Sperber 1949). Rabbits also excrete piperidine unchanged (Hildebrandt 1900). When injected intraventricularly into rats, piperidine disappeared exponentially with a half-life of 20 min (Meek 1973). In a more recent study, Okano et al (1978) found that in rats most of an i.p. dose of [3H]-piperidine was excreted unchanged. Two major metabolites were identified as 3- and 4-hydroxypiperidine. Both compounds were also found in untreated animals and thus are probably metabolites of piperidine of exogenous or endogenous origin. These metabolites represent a detoxification mechanism, since they lack the potent pharmacological activities of the parent compound. Two unidentified metabolites were assumed to be conjugates. In a much earlier study, Novello et al (1926) claimed that piperidine was excreted as the ethereal sulfate. Metabolic studies of analgesics and anesthetics containing the piperidine ring have demonstrated the occurrence of N-hydroxylation, formation of a 6-oxo-derivative, and C-oxidative ring cleavage (Oelschlager and Al Shaik 1985). N-nitrosopiperidine has been synthesized from piperidine and sodium nitrite in the gastric contents,R.L. Reed isolated stomach and isolated small intestine of rats (Alam et al 1971; Epstein 1972).


UN2401 Piperidine, Hazard Class: 8; Labels: 8-Corrosive material, 3-Flammable liquid.

Purification Methods

Dry piperidine with BaO, KOH, CaH2, or sodium, and fractionally distil (optionally from sodium, CaH2, or P2O5). Purify from pyridine by zone melting. [Beilstein 22 H 6, 22


Piperidine is a highly flammable liquid. Vapor may form explosive mixture with air (at room temperature). A medium-strong base. Reacts violently with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides. Piperidine neutralizes acids in exothermic reactions to form salts plus water. May be incompatible with isocyanates, halogenated organics, peroxides, phenols (acidic), epoxides, anhydrides, and acid halides. Flammable gaseous hydrogen may be generated in combination with strong reducing agents, such as hydrides.

Piperidine Preparation Products And Raw materials

Raw materials

Preparation Products

Piperidine Suppliers

Global( 0)Suppliers
Supplier Tel Fax Email Country ProdList Advantage

Piperidine Spectrum

110-89-4(Piperidine)Related Search:

Copyright 2017 © ChemicalBook. All rights reserved