Chinese Japanese Germany Korea


8-Hydroxyquinoline structure
Chemical Name:
OQ;8-OQ;Oxin;Tumex;OXINE;8-Oxine;BIOQUIN;8-Quinol;Fennosan;NSC 2039
Molecular Formula:
Formula Weight:
MOL File:

8-Hydroxyquinoline Properties

Melting point:
70-73 °C(lit.)
Boiling point:
267 °C752 mm Hg(lit.)
refractive index 
1.4500 (estimate)
Flash point:
storage temp. 
Store at RT.
5.017(at 20℃)
White to pale yellow or light beige
Water Solubility 
Light Sensitive
CAS DataBase Reference
148-24-3(CAS DataBase Reference)
EWG's Food Scores
NIST Chemistry Reference
3 (Vol. 13, Sup 7) 1987
EPA Substance Registry System
8-Quinolinol (148-24-3)
  • Risk and Safety Statements
Signal word  Warning
Hazard statements  H302-H341
Precautionary statements  P201-P280-P301+P312a-P308+P313-P405-P501a
Hazard Codes  Xn,Xi
Risk Statements  22-68-36/37/38
Safety Statements  45-36/37/39-26-36
RIDADR  2811
WGK Germany  3
RTECS  VC4200000
Hazard Note  Harmful/Irritant
HazardClass  9
PackingGroup  III
HS Code  29334990
Toxicity An LD50 value of 1,200mg/kg was reported for oral administration of 8-hydroxyquinoline to rats (straidsex unspecified; AAPCO, 1966);a value of 48 mg/kg was reported for intraperitoneal administration to mice (strain/sex unspecxed; Bernstein et al., 1963).
NFPA 704
2 0

8-Hydroxyquinoline price More Price(25)

Manufacturer Product number Product description CAS number Packaging Price Updated Buy
Sigma-Aldrich 8.20261 8-Hydroxyquinoline for synthesis 250 g $52.91 2021-03-22 Buy
Sigma-Aldrich 252565 8-Hydroxyquinoline ACS reagent, 99% 148-24-3 50g $62.4 2021-03-22 Buy
Sigma-Aldrich 8.20261 8-Hydroxyquinoline for synthesis 1 kg $171.12 2021-03-22 Buy
Sigma-Aldrich 1.07098 8-Hydroxyquinoline GR for analysis Reag. Ph Eur 250 g $212.75 2021-03-22 Buy
Sigma-Aldrich 252565 8-Hydroxyquinoline ACS reagent, 99% 148-24-3 1kg $266 2021-03-22 Buy

8-Hydroxyquinoline Chemical Properties,Uses,Production

Chemical Properties

8-Hydroxyquinoline is a white to cream-colored crystal or crystalline powder that is insoluble in water or ether and freely soluble in ethanol, acetone, chloroform, benzene, and aqueous mineral acids. It readily forms stable metal chelates, which are soluble or precipitable in organic solvents, depending on the pH of the solution (Hollingshead, 1954).




Oxine is an almost universal complexing agent; it reacts with very many metal ions to give water-insoluble precipitates. It has been used so far for the determination of aluminium, antimony, beryllium, bismuth, cadmium, cerium, cobalt, chromium, copper, gallium, germanium, lanthanum, lithium, magnesium, manganese, molybdenum, nickel, ruthenium, thorium, titanium, uranium, vanadium, tungsten, zinc and zirconium.
With the exception of the aluminium, bismuth, gallium, indium, lead and thallium complexes, the oxinate precipitates contain water of crystallization. The majority of the complexes are of stoichiometric composition (either with or without water of crystallization), and therefore subsequent to drying at suitable temperature the precipitates are ready for direct weighing. The precipitates containing water of crystallization are usually dried at 100-105°C and weighed as such, or dried at 130-140°C when the water of crystallization is eliminated.
The complexes can be decomposed with strong acids, and the oxine liberated in an amount equivalent to the metal may be determined by bromatometric titration.
The electrically neutral oxinate complexes are sparingly soluble in water whereas they readily dissolve in apolar solvents immiscible with water, for instance chloroform. Hence this ligand is useful for the solvent extraction enrichment and the subsequent spectrophotometric determination of metal ions. The optimum pH range for complex formation is dependent upon the stabilities of the oxinate complexes. Accordingly, divalent metals are usually precipitated quantitatively in neutral or slightly alkaline media. Adjustment of the suitable pH may be made with various tartrate buffers, for example with ammonia-ammonium tartrate in the pH range 6-10, and with sodium hydroxidesodium tartrate buffers for the pH range 10-13. Complexes of tri- and tetravalent metals are more stable, and thus can be precipitated quantitatively even at about pH 4. In these cases the pH of the solution is adjusted to the desired value with acetic acid-sodium acetate buffers. The copper(II) and iron(III) complexes precipitate quantitatively even at pH 2.7, as does vanadium(V) as an oxinate complex of uncertain composition.


8-Hydroxyquinoline has a wide variety of uses. Primarily because of their metal chelating properties, 8-hydroxyquinoline and its salts, halogenated derivatives, and metal complexes have been used as analytical reagents (Hollingshead, 1954) and as antimicrobial agents in medicine, fungicides, and insecticides (Harvey, 1975). It is also used as a preservative in cosmetics and tobacco, a chemical intermediate in dye synthesis (IARC, 1977), and a precipitating reagent for uranium and other radioactive metals in nuclear power plant liquid waste effluent. It is used in nuclear medicine with indium-111 (Davis et al., 1978).
8-Hydroxyquinoline may be used as a chelating ligand in the preparation of tris-(8-hydroxyquinoline)aluminum (Alq3), an organic electroluminescent compound used in organic light-emitting devices (OLEDs).


ChEBI: A monohydroxyquinoline that is quinoline substituted by a hydroxy group at position 8. Its fungicidal properties are used for the control of grey mould on vines and tomatoes.

Manufacturing Process

The mixture of 1.4 kg o-nitrophenol, 2.1 kg o-aminophenol, 6 kg glycerine (d = 1.26) and 5 kg sulfuric acid (d = 1.848) was heated at reflux to temperature 130°-140°C. This temperature was kept for 1.5 hours. The obtained oxyquinoline precipitated, the liquid was removed with water-steam distillation. The residue was diluted with water and alkalized with sodium hydroxide and sodium carbonate to the strong alkaline reaction. The repeated distillation with water steam gave the oil, which hardened as the long needles by cooling. MP: 75°-76°C recrystallized from diluted ethanol.
In practice it is usually used as sulfate salt

brand name

Aci-jel;Benzease;Chinosol;Cp-cap;Dermacid;Dermoplast;Fennosan h 30;Heriat;Hydroxybenoxopyridine;Medicone derma-hc;Oxykin;Oxyquinoline-rhp;Pedivol;Phenopyridine;Preconsol;Quinoderm;Quinoped;Quinophenol;Recta medicone-hc;Semori;Serohinol;Serorhinol;Superol;Trimo-san;Triva douch powder;Triva jel.

Therapeutic Function


World Health Organization (WHO)

Halogenated hydroxyquinoline is structurally related to clioquinol. See WHO comment for clioquinol. (Reference: (WHODI) WHO Drug Information, 77.1, 9, 1977)

General Description

White to off-white or faintly yellow crystalline powder. Phenolic odor.

Air & Water Reactions

Insoluble in water.

Reactivity Profile

8-Hydroxyquinoline darkens on exposure to light. 8-Hydroxyquinoline readily forms stable metal chelates. 8-Hydroxyquinoline is incompatible with strong oxidizers. 8-Hydroxyquinoline is also incompatible with many metal ions.


Toxic by ingestion. Questionable carcinogen.

Fire Hazard

Flash point data for 8-Hydroxyquinoline are not available; however, 8-Hydroxyquinoline is probably combustible.

Clinical Use

Oxine, quinophenol, or oxyquinoline is the parent compoundfrom which the antiprotozoal oxyquinolines havebeen derived. The antibacterial and antifungal properties of oxine and its derivatives, which are believed to result fromthe ability to chelate metal ions, are well known. Aqueoussolutions of acid salts of oxine, particularly the sulfate(Chinosol, Quinosol), in concentrations of 1:3,000 to1:1,000, have been used as topical antiseptics. The substitutionof an iodine atom at the 7-position of 8-hydroxyquinolinesyields compounds with broad-spectrum amebicidalproperties.

Safety Profile

Poison by intraperitoneal and subcutaneous routes. Moderately toxic by ingestion. Questionable carcinogen with experimental carcinogenic, neoplastigenic, and tumorigenic data. Experimental reproductive effects. A central nervous system stimulant. Human mutation data reported. Combustible when exposed to heat or flame. When heated to decomposition it emits hghly toxic fumes of NOx.

Purification Methods

Crystallise oxine from hot EtOH, acetone, pet ether (b 60-80o) or water. Crude oxine can be purified by precipitation of copper oxinate, followed by liberation of free oxine with H2S or by steam distillation after acidification with H2SO4. Store it in the dark. It forms complexes with many metals. [Manske et al. Can J Research 27F 359 1949, Phillips Chem Rev 56 271 1956, Beilstein 21 III/IV 1135, 21/3 V 252.]

8-Hydroxyquinoline Preparation Products And Raw materials

Raw materials

Preparation Products

8-Hydroxyquinoline Suppliers

Global( 684)Suppliers
Supplier Tel Fax Email Country ProdList Advantage
Hubei xin bonus chemical co. LTD
027-59338440 CHINA 23035 58
Zhengzhou Yuanli Biological Technology Co., Ltd
0086-371-67897895 CHINA 136 58
Hefei TNJ Chemical Industry Co.,Ltd.
86-0551-65418684 18949823763
86-0551-65418684 China 2911 55
Tangshan Moneide Trading Co., Ltd.
86-315-8309571 15633399667 CHINA 532 58
Career Henan Chemica Co
13203830695 0371-86658258
0371-86658258 CHINA 30287 58
Shandong Natural Micron Pharm Tech Co.,LTD
13752232623 CHINA 2271 58
Wuhan Shuokang Biological Technology Co.,Ltd
+8615927270571 CHINA 133 58
Springchem New Material Technology Co.,Limited
86-21-51752789 China 2063 57
Capot Chemical Co.,Ltd.
+86(0)13336195806 +86-571-85586718
+86-571-85864795 China 20010 60
Henan Tianfu Chemical Co.,Ltd.
0371-55170693 CHINA 22607 55

Related articles

View Lastest Price from 8-Hydroxyquinoline manufacturers

Image Release date Product Price Min. Order Purity Supply Ability Manufacturer
2021-07-21 8-Hydroxyquinoline
US $20.00 / KG 1KG 99% 50000kg Wuhan Shuokang Biological Technology Co.,Ltd
2020-07-13 8-Hydroxyquinoline Joyce
US $19.90 / KG 10g 99% 10 tons Xingtai Haoxun Import and Export Trade Co., Ltd.
2021-07-10 8-Hydroxyquinoline
US $15.00-10.00 / KG 1KG 99%+ HPLC Monthly supply of 1 ton Zhuozhou Wenxi import and Export Co., Ltd

8-Hydroxyquinoline Spectrum

148-24-3(8-Hydroxyquinoline)Related Search:

Copyright 2017 © ChemicalBook. All rights reserved