Chinese English Japanese Germany Korea


아이오딘 구조식 이미지
카스 번호:
아이오딘;아이오딘크리스탈즈;아이오딘(요오드);요오드;아이오딘, 원소
포뮬러 무게:
MOL 파일:

아이오딘 속성

113 °C (lit.)
끓는 점
184 °C (lit.)
1.32 g/mL at 25 °C
증기 밀도
9 (vs air)
0.31 mm Hg ( 25 °C)
저장 조건
Store at RT.
Miscible with chloroform, carbon tetrachloride, carbon disulfide, cyclohexane, methanol, ethyl acetate, toluene, benzene, n-hexane, butan-2-ol, bromoethane, n-heptane, glycerol and diethyl ether.
물리적 상태
particles (round)
Specific Gravity
5.4 (H2O)(saturated solution)
Sharp, characteristic odor
1.3E15 μΩ-cm
0.3 g/L (20 ºC)
Crystal Structure
노출 한도
Ceiling 0.1 ppm (~1mg/m3) (ACGIH, MSHA, OSHA, and NIOSH); IDLH 10 ppm (NIOSH).
CAS 데이터베이스
7553-56-2(CAS DataBase Reference)
Iodine (7553-56-2)
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 Xn,N,F
위험 카페고리 넘버 36/37/38-50-20/21-36/38-20/21/22-22-40-19-11-36/37
안전지침서 26-61-25-23-36/37-16
유엔번호(UN No.) UN 2056 3/PG 2
WGK 독일 2
RTECS 번호 NN1575000
F 고인화성물질 10
HS 번호 2801 20 00
위험 등급 8
포장분류 III
유해 물질 데이터 7553-56-2(Hazardous Substances Data)
독성 LD50 oral (rat)
14,000 mg/kg
LCLO inhal (rat)
80 ppm (800 mg/m3; 1 h)
0.1 ppm (ceiling, 1 mg/m3)
0.1 ppm (ceiling, 1 mg/m3)
기존화학 물질 KE-21023
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H225 고인화성 액체 및 증기 인화성 액체 구분 2 위험 P210,P233, P240, P241, P242, P243,P280, P303+ P361+P353, P370+P378,P403+P235, P501
H302 삼키면 유해함 급성 독성 물질 - 경구 구분 4 경고 P264, P270, P301+P312, P330, P501
H312 피부와 접촉하면 유해함 급성 독성 물질 - 경피 구분 4 경고 P280,P302+P352, P312, P322, P363,P501
H313 피부와 접촉하면 유해할 수 있음 급성 독성 물질 - 경피 구분 5 P312
H314 피부에 심한 화상과 눈에 손상을 일으킴 피부부식성 또는 자극성물질 구분 1A, B, C 위험 P260,P264, P280, P301+P330+ P331,P303+P361+P353, P363, P304+P340,P310, P321, P305+ P351+P338, P405,P501
H315 피부에 자극을 일으킴 피부부식성 또는 자극성물질 구분 2 경고 P264, P280, P302+P352, P321,P332+P313, P362
H318 눈에 심한 손상을 일으킴 심한 눈 손상 또는 자극성 물질 구분 1 위험 P280, P305+P351+P338, P310
H319 눈에 심한 자극을 일으킴 심한 눈 손상 또는 자극성 물질 구분 2A 경고 P264, P280, P305+P351+P338,P337+P313P
H332 흡입하면 유해함 급성 독성 물질 흡입 구분 4 경고 P261, P271, P304+P340, P312
H333 흡입하면 유해할 수 있음 급성 독성 물질 흡입 구분 5 P304+P312
H335 호흡 자극성을 일으킬 수 있음 특정 표적장기 독성 - 1회 노출;호흡기계 자극 구분 3 경고
H351 암을 일으킬 것으로 의심됨 (노출되어도 암을 일으키지 않는다는 결정적인 증거가 있는 노출경로가 있다면 노출경로 기재) 발암성 물질 구분 2 경고 P201, P202, P281, P308+P313, P405,P501
H371 장기(또는, 영향을 받은 알려진 모든 장기를 명시)에 손상을 일으킬 수 있음(노출되어도 특정 표적장기 독성을 일으키지 않는다는 결정적인 노출경로가 있다면 노출경로를 기재) 특정 표적장기 독성 - 2회 노출 구분 2 경고 P260, P264, P270, P309+P311, P405,P501
H372 장기간 또는 반복 노출되면 장기(또는, 영향을 받은 알려진 모든 장기를 명시)에 손상을 일으킴 특정 표적장기 독성 - 반복 노출 구분 1 위험 P260, P264, P270, P314, P501
H373 장기간 또는 반복 노출되면 장기(또는, 영향을 받은 알려진 모든 장기를 명시)에 손상을 일으킬 수 있음 특정 표적장기 독성 - 반복 노출 구분 2 경고 P260, P314, P501
H400 수생생물에 매우 유독함 수생 환경유해성 물질 - 급성 구분 1 경고 P273, P391, P501
H401 수생생물에 유독함 수생 환경유해성 물질 - 급성 구분 2 P273, P501
H402 수생생물에 유해함 수생 환경유해성 물질 - 급성 구분 3
P210 열·스파크·화염·고열로부터 멀리하시오 - 금연 하시오.
P260 분진·흄·가스·미스트·증기·...·스프레이를 흡입하지 마시오.
P261 분진·흄·가스·미스트·증기·...·스프레이의 흡입을 피하시오.
P273 환경으로 배출하지 마시오.
P280 보호장갑/보호의/보안경/안면보호구를 착용하시오.
P314 불편함을 느끼면 의학적인 조치·조언을 구하시오.
P321 (…) 처치를 하시오.
P301+P330+P331 삼켰다면 입을 씻어내시오. 토하게 하려 하지 마시오.
P303+P361+P353 피부(또는 머리카락)에 묻으면 오염된 모든 의복은 벗거나 제거하시오 피부를 물로 씻으시오/샤워하시오.
P304+P340 흡입하면 신선한 공기가 있는 곳으로 옮기고 호흡하기 쉬운 자세로 안정을 취하시오.
P305+P351+P338 눈에 묻으면 몇 분간 물로 조심해서 씻으시오. 가능하면 콘택트렌즈를 제거하시오. 계속 씻으시오.
P370+P378 화재 시 불을 끄기 위해 (Section 5. 폭발, 화재시 대처방법의 적절한 소화제)을(를) 사용하시오.
P405 밀봉하여 저장하시오.
P403+P235 환기가 잘 되는 곳에 보관하고 저온으로 유지하시오.
NFPA 704
3 0

아이오딘 C화학적 특성, 용도, 생산


Iodine was discovered in 1811 by Bernard Courtois, and is classed among the rarer elements. Iodine is found naturally in seaweed, and is considered and generally recognized as safe substance by the US Food and Drug Administration (FDA). Iodine is a required element by many species, including humans. It has been recognized as preventative against goiter since 1819, and is used in iodized salt for this purpose. Iodine is also used as a dough oxidizer in commercial bread making. Iodine is generally extracted from natural and oil field brines by means of oxidation of iodide with chlorine, then removal from solution with an airstream. Iodine is reabsorbed in solution and reduces to hidrotic acid with sulfur dioxide. The solution is then chlorinated to precipitate free iodine, and is further purified by treatment with concentrated sulfuric acid. Iodine is the heaviest essential element for most life, with tungsten being used by some bacteria.

화학적 성질

Iodine is available as bluish-black crystals with a metallic luster and a pungent odor. It is slightly soluble in water (0.03 g/100 g). It is stable under ordinary conditions of use and storage. Iodine is incompatible with ammonia, powdered metals, alkali metals, or strong reducing agents. It reacts violently or explosively with acetaldehyde and acetylene, and reacts with ammonium hydroxide to form shock-sensitive iodides on drying. Iodine is a naturally occurring element that is essential for the good health of people and animals. Iodine is found in small amounts in seawater and in certain rocks and sediments. Iodine occurs in many different forms that can be blue, brown, yellow, red, white, or colorless. Most forms of iodine easily dissolve in water or alcohol. Iodine has many uses. Its most important use is as a disinfectant for cleaning surfaces and storage containers. It is also used in skin soaps and bandages, and for purifying water. Iodine is used in medicines and is added to food, such as table salt, to ensure that people have enough iodine in their bodies to form essential thyroid hormones. Iodine is put into animal feeds for the same reason. Iodine is used in the chemical industry for making inks and coloring agents, chemicals used in photography, and in making batteries, fuels, and lubricants. Radioactive iodine also occurs naturally. Radioactive iodine is used in medical tests and to treat certain diseases, such as over-activity or cancer of the thyroid gland. Iodine is important for the thyroid gland to produce thyroid hormones.

물리적 성질

Bluish-black orthorhombic crystals; refractive index 3.34; density of solid4.933 g/cm3at 20°C; density of the element in liquid form at 120°C 3.96 g/cm3;melts at 113.6°C to a black mobile liquid; the solid can be sublimed to vaporbelow its melting point; vapor pressure of solid at 25°C 0.3075 torr; vaporpressure at 113.6°C 90.5 torr; the liquid boils at 184.3°C giving violet vapors;vapor density 6.75 g/L; critical temperature 545.8°C; critical pressure 48.9atm; critical volume 155 cm3/mol; dielectric constant of solid 10.3 at 23°C and liquid 11.08 at 118°C; resistivity 5.85 x 106ohm-cm at 25°C, and 1.10 x 105ohm-cm at 140°C; slightly soluble in water, 0.33 g/L at 25°C; soluble inethanol, carbon disulfide, benzene and chloroform, forming brown solutions;sulfur, selenium, metal iodides and many organic compounds dissolve in liq-uid iodine.


Iodine was discovered in 1811 by French chemist, Bernard Courtois duringthe production of potassium nitrate for Napoleon’s armies. It was recognizedas a new element by Gay-Lussac who named it iodine.
Iodine is widely distributed in nature, found in rocks, soils and under-ground brines. An important mineral is lautarite, which is anhydrous calciumiodate found in nitrate deposits in Chile. The element also occurs in brownseaweeds, in seawater, and in many natural gas wells. Its concentration in theearth’s crust is an estimated 0.5 mg/kg; and in seawater 0.06 mg/L.
Iodine is used in many dyes and as a colorant for foods and cosmetics. Itssilver salt is used in photographic negative emulsions. Other industrial appli-cations include dehydrogenation of butane and butylenes to 1,3-butadiene; asa catalyst in many organic reactions; in treatment of naphtha to yield highoctane motor fuel; and in preparation of many metals in high purity grade,such as titanium, zirconium and hafnium.
Iodine is an essential nutrient element required for thyroid gland. It isadded to salt and to animal feeds for the prevention of goiter. In medicine itis used as a therapeutic reagent for the treatment of various thyroid-relateddiseases. It also is used as an antiseptic. Radioactive isotopes of iodine areused for treating thyroid cancer, heart diseases including tachycardia, and asa tracer for diagnosing certain diseases.
An important application of iodine is in water purification and sanitation.It is used as a disinfectant in food-processing plants, dairies and restaurants.It is applied to disinfect municipal and other water supplies and swimmingpools.


Anti-infective, topical.


Iodine is used in the manufacture of manyiodine compounds; in photographic materi als; as an antiseptic, disinfectant, and germi cide; and as a reagent in analytical chemistry.It occurs in traces in seawater and in igneousrocks.


Synthesis of organic chemicals; photographic film; as a disinfectant in drinking water

생산 방법

In the United States, the principal method used to recover iodine from oil brines involves the oxidation of iodide by chlorine, followed by removal of the volatile iodine from solution with an airstream. The iodine is reabsorbed in solution and reduced to hidrotic acid with sulfur dioxide. The solution is then chlorinated to precipitate free iodine, which is further purified by treatment with concentrated sulfuric acid. The same process is used to recover iodine from natural brines. In the recovery of iodine from Chilean nitrate deposits, solutions containing the iodates are reduced with sodium bisulfite to precipitate the iodine, which is then purified by sublimation.


ChEBI: Molecule comprising two covalently bonded iodine atoms with overall zero charge..

Biological Functions

Inhibition of the release of thyroid hormone by iodide is the basis for its use in hyperthyroidism. Iodide decreases the vascularity of the enlarged thyroid gland and also lowers the elevated BMR. It also has been suggested that excess iodide might change the conformation of thyroglobulin, making the protein less susceptible to thyroidal proteolysis.

일반 설명

Violet-black crystals with a metallic luster and a sharp odor. Mp: 133.5°C, bp: 185°C. Emits toxic vapor at room conditions; vapor becomes visibly purple when its concentration builds up in a confined space. Nearly insoluble in water but very soluble in aqueous solutions of iodides.

반응 프로필

Iodine is an oxidizing agent. Reacts vigorously with reducing materials. Incompatible with powdered metals in the presence of water (ignites), with gaseous or aqueous ammonia (forms explosive products), with acetylene (reacts explosively), with acetaldehyde (violent reaction), with metal azides (forms yellow explosive iodoazides), with metal hydrides (ignites), with metal carbides (ignites easily), with potassium and sodium (forms shock-senstive explosive compounds) and with alkali-earth metals (ignites). Incompatible with ethanol, formamide, chlorine, bromine, bromine trifluoride, chlorine trifluoride.


Iodine vapors are an irritant to eyes, nose and mucous membranes.Inhalation can cause headache, irritation, and congestion of lungs. Oralintake can produce burning of the mouth, vomiting, diarrhea, and abdominalcramps. Skin contact can cause rashes.


The acute toxicity of iodine by inhalation is high. Exposure may cause severe breathing difficulties, which may be delayed in onset; headache, tightness of the chest, and congestion of the lungs may also result. In an experimental investigation, four human subjects tolerated 0.57 ppm iodine vapor for 5 min without eye irritation, but all experienced eye irritation in 2 min at 1.63 ppm. Iodine in crystalline form or in concentrated solutions is a severe skin irritant; it is not easily removed from the skin, and the lesions resemble thermal burns. Iodine is more toxic by the oral route in humans than in experimental animals; ingestion of 2 to 3 g of the solid may be fatal in humans.
Iodine has not been found to be carcinogenic or to show reproductive or developmental toxicity in humans. Chronic absorption of iodine may cause insomnia, inflammation of the eyes and nose, bronchitis, tremor, rapid heartbeat, diarrhea, and weight loss.

인화성 및 폭발성

Iodine is noncombustible and in itself represents a negligible fire hazard when exposed to heat or flame. However, when heated, it will increase the burning rate of combustible materials.


Iodine is released into the environment during nuclear explosions, as well as around any fuel rods, primarily spent. Due to iodine’s uses, it is frequently released into the environment, but adsorbs many minerals as well as organic masses, which inhibit transport.


safety goggles and rubber gloves should be worn when handling iodine, and operations involving large quantities should be conducted in a fume hood to prevent exposure to iodine vapor or dusts by inhalation.

Purification Methods

It is usually purified by vacuum sublimation. Preliminary purifications include grinding with 25% by weight of KI, blending with 10% BaO and subliming, subliming with CaO, grinding to a powder and treating with successive portions of H2O to remove dissolved salts, then drying, and recrystallising from *benzene. Barrer and Wasilewski [Trans Faraday Soc 57 1140 1961] dissolved I2 in concentrated KI and distilled it, then steam distilled it three times and washed it with distilled H2O. Organic material is removed by sublimation in a current of O2 over platinum at about 700o, the iodine being finally sublimed under vacuum. HARMFUL VAPOURS.

Toxicity evaluation

Iodine is a powerful oxidizing agent and has a direct action on cells by precipitating proteins. The affected cells may be destroyed. In addition to the primary irritant action of iodine, this compound can act as a potent sensitizer. Iodine is an integral part of thyroid hormones (tetraiodothyronine (thyroxine) and triiodothyronine), and deficiency results in compensatory hyperplasia and hypertrophy of the thyroid gland (endemic goiter). Endemic goiter occurs naturally where soil is deficient in iodine.

비 호환성

Iodine is stable under normal temperatures and pressures. Iodine may react violently with acetylene, ammonia, acetaldehyde, formaldehyde, acrylonitrile, powdered antimony, tetraamine copper(II) sulfate, and liquid chlorine. Iodine can form sensitive, explosive mixtures with potassium, sodium, and oxygen difluoride; ammonium hydroxide reacts with iodine to produce nitrogen triiodide, which detonates on drying.

폐기물 처리

Excess iodine and waste material containing this substance should be placed in an appropriate container, clearly labeled, and handled according to your institution's waste disposal guidelines. For more information on disposal procedures, see Chapter 7 of this volume.

주의 사항

Students, users, and occupational workers should specially note iodine as: Poison, Danger, and Corrosive. Exposures cause severe irritation or burns to every area of contact. It may be fatal if ingested/swallowed/inhaled. The vapors cause severe irritation to the skin, eyes, and respiratory tract. Iodine is a strong oxidizer and contact with other material may cause fi re. Occupational workers should wear impervious protective clothing, boots, gloves, a lab- oratory coat, apron or coveralls, as appropriate, to prevent skin contact of iodine. Also, workers should use chemical safety goggles and/or a full-face shield where splashing is possible. Maintain an eye-wash fountain and quick-drench facilities in the work area.

아이오딘 준비 용품 및 원자재


준비 용품

아이오딘 공급 업체

글로벌( 476)공급 업체
공급자 전화 팩스 이메일 국가 제품 수 이점
Shanxi Naipu Import and Export Co.,Ltd
+8613734021967 CHINA 1011 58
Shijiazhuang Tongyang Import and Export Co., LTD CHINA 995 58
Henan Tianfu Chemical Co.,Ltd.
0371-55170693 China 22607 55
Hangzhou FandaChem Co.,Ltd.
+86-571-56059825 CHINA 9115 55
Nanjing ChemLin Chemical Industry Co., Ltd.
025-83697070 CHINA 3013 60
Hefei TNJ Chemical Industry Co.,Ltd.
86-0551-65418697 China 3000 55
Shanghai Zheyan Biotech Co., Ltd.
18017610038 CHINA 3623 58
career henan chemical co
+86-0371-55982848 China 29954 58
+8619933070948 China 681 58
Hubei Jusheng Technology Co.,Ltd.
027-59599243 CHINA 28229 58

아이오딘 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved