ChemicalBook
Chinese english Germany Japanese Korea

Nickel Produkt Beschreibung

Nickel Struktur
7440-02-0
CAS-Nr.
7440-02-0
Bezeichnung:
Nickel
Englisch Name:
Nickel
Synonyma:
Ni;NP 2;(1WT%);Nickel;Ni 270;Nichel;NI-5249P;raney ni;NI000525;NI000110
CBNumber:
CB4854179
Summenformel:
Ni
Molgewicht:
58.69
MOL-Datei:
7440-02-0.mol

Nickel Eigenschaften

Schmelzpunkt:
212 °C (dec.)(lit.)
Siedepunkt:
2732 °C(lit.)
Dichte
8.9
Dampfdichte
5.8 (vs air)
storage temp. 
Flammables area
Aggregatzustand
wire
Farbe
White to gray-white
Wichte
8.9
PH
8.5-12.0
Widerstand (resistivity)
6.97 μΩ-cm, 20°C
Wasserlöslichkeit
It is insoluble in water.
Sensitive 
air sensitive
Merck 
14,8107
Expositionsgrenzwerte
TLA-TWA (metal) 1 mg/m3 (ACGIH, MSHA, and OSHA); (soluble inorganic compounds) 0.1 mg(Ni)/m3 (ACGIH) 0.015 mg (Ni)/m3 (NIOSH); (insoluble inorganic compounds) 1 mg/m3 (ACGIH).
Stabilität:
Stable in massive form. Powder is pyrophoric - can ignite spontaneously. May react violently with titanium, ammonium nitrate, potassium perchlorate, hydrazoic acid. Incompatible with acids, oxidizing agents, sulfur.
InChIKey
PXHVJJICTQNCMI-UHFFFAOYSA-N
CAS Datenbank
7440-02-0(CAS DataBase Reference)
NIST chemische Informationen
Nickel(7440-02-0)
EPA chemische Informationen
Nickel(7440-02-0)
Sicherheit
  • Risiko- und Sicherheitserklärung
  • Gefahreninformationscode (GHS)
Kennzeichnung gefährlicher C,Xi,Xn,F,T
R-Sätze: 34-50/53-43-40-10-17-52/53-48/23
S-Sätze: 26-45-60-61-36-22-36/37-16-15-5-36/37/39-43-28
RIDADR  UN 1493 5.1/PG 2
WGK Germany  3
RTECS-Nr. VW4725000
8
TSCA  Yes
HazardClass  4.1
PackingGroup  II
HS Code  38151100
Giftige Stoffe Daten 7440-02-0(Hazardous Substances Data)
Bildanzeige (GHS)
Alarmwort Achtung
Gefahrenhinweise
Code Gefahrenhinweise Gefahrenklasse Abteilung Alarmwort Symbol P-Code
H228 Entzündbarer Feststoff. Entzündbare Feststoffe Kategorie 1 Achtung
Warnung
P210, P240,P241, P280, P370+P378
H250 Entzündet sich in Berührung mit Luft von selbst. Pyrophoric liquids; Pyrorophoric solids Category 1 Achtung P210, P222, P280, P302+P334,P370+P378, P422
H301 Giftig bei Verschlucken. Akute Toxizität oral Kategorie 3 Achtung P264, P270, P301+P310, P321, P330,P405, P501
H311 Giftig bei Hautkontakt. Akute Toxizität dermal Kategorie 3 Achtung P280, P302+P352, P312, P322, P361,P363, P405, P501
H315 Verursacht Hautreizungen. Hautreizung Kategorie 2 Warnung P264, P280, P302+P352, P321,P332+P313, P362
H317 Kann allergische Hautreaktionen verursachen. Sensibilisierung der Haut Kategorie 1A Warnung P261, P272, P280, P302+P352,P333+P313, P321, P363, P501
H319 Verursacht schwere Augenreizung. Schwere Augenreizung Kategorie 2 Warnung P264, P280, P305+P351+P338,P337+P313P
H332 Gesundheitsschädlich bei Einatmen. Akute Toxizität inhalativ Kategorie 4 Warnung P261, P271, P304+P340, P312
H334 Kann bei Einatmen Allergie, asthmaartige Symptome oder Atembeschwerden verursachen. Sensibilisierung der Atemwege Kategorie 1 Achtung P261, P285, P304+P341, P342+P311,P501
H335 Kann die Atemwege reizen. Spezifische Zielorgan-Toxizität (einmalige Exposition) Kategorie 3 (Atemwegsreizung) Warnung
H350 Kann Krebs verursachen. Karzinogenität Kategorie 1A Achtung
H351 Kann vermutlich Krebs verursachen. Karzinogenität Kategorie 2 Warnung P201, P202, P281, P308+P313, P405,P501
H372 Schädigt bei Hautkontakt und Verschlucken die Organe bei längerer oder wiederholter Exposition. Spezifische Zielorgan-Toxizität (wiederholte Exposition) Kategorie 1 Achtung P260, P264, P270, P314, P501
H373 Kann die Organe schädigen bei längerer oder wiederholter Exposition. Spezifische Zielorgan-Toxizität (wiederholte Exposition) Kategorie 2 Warnung P260, P314, P501
H412 Schädlich für Wasserorganismen, mit langfristiger Wirkung. Langfristig (chronisch) gewässergefährdend Kategorie 3 P273, P501
H413 Kann für Wasserorganismen schädlich sein, mit langfristiger Wirkung. Langfristig (chronisch) gewässergefährdend Kategorie 4
Sicherheit
P210 Von Hitze, heißen Oberflächen, Funken, offenen Flammen und anderen Zündquellenarten fernhalten. Nicht rauchen.
P231 Unter inertem Gas handhaben.
P260 Dampf/Aerosol/Nebel nicht einatmen.
P273 Freisetzung in die Umwelt vermeiden.
P280 Schutzhandschuhe/Schutzkleidung/Augenschutz tragen.
P285 Bei unzureichender Belüftung Atemschutz tragen.
P314 Bei Unwohlsein ärztlichen Rat einholen / ärztliche Hilfe hinzuziehen.
P321 Besondere Behandlung
P302+P334 BEI BERÜHRUNG MIT DER HAUT: In kaltes Wasser tauchen/ nassen Verband anlegen.
P302+P352 BEI BERÜHRUNG MIT DER HAUT: Mit viel Wasser/... (Hersteller kann, falls zweckmäßig, ein Reinigungsmittel angeben oder, wenn Wasser eindeutig ungeeignet ist, ein alternatives Mittel empfehlen) waschen.
P305+P351+P338 BEI KONTAKT MIT DEN AUGEN: Einige Minuten lang behutsam mit Wasser spülen. Eventuell vorhandene Kontaktlinsen nach Möglichkeit entfernen. Weiter spülen.
P333+P313 Bei Hautreizung oder -ausschlag: Ärztlichen Rat einholen/ärztliche Hilfe hinzuziehen.
P370+P378 Bei Brand: zum Löschen verwenden.
P422 Inhalt in/unter inertem Gas aufbewahren.

Nickel Chemische Eigenschaften,Einsatz,Produktion Methoden

ERSCHEINUNGSBILD

SILBERFARBENER METALLISCHER FESTSTOFF IN VERSCHIEDENEN FORMEN

PHYSIKALISCHE GEFAHREN

Staubexplosion der pulverisierten oder granulierten Substanz in Gemischen mit Luft möglich.

CHEMISCHE GEFAHREN

Reagiert als Pulver sehr heftig mit Titanpulver, Kaliumperchlorat und Oxidationsmitteln wie Ammoniumnitrat. Feuer- und Explosionsgefahr. Reagiert langsam mit nichtoxidierenden, schneller mit oxidierenden Säuren. Bei Brand in Gegenwart von Nickel können giftige Gase und Dämpfe (wie Nickelcarbonyl) freigesetzt werden.

ARBEITSPLATZGRENZWERTE

TLV: 1,5 mg/m?(Einatembare Fraktion) (als TWA); Krebskategorie A5 (kein Verdacht auf krebserzeugende Wirkung beim Menschen); (ACGIH 2005).
MAK: (Einatembare Fraktion) Sensibilisierung der Atemwege und der Haut; Krebserzeugend Kategorie 1; (DFG 2005).

AUFNAHMEWEGE

Aufnahme in den Körper durch Inhalation des Staubes.

INHALATIONSGEFAHREN

Verdampfung bei 20 °C vernachlässigbar; eine gesundheitsschädliche Partikelkonzentration in der Luft kann jedoch beim Dispergieren schnell erreicht werden.

WIRKUNGEN BEI KURZZEITEXPOSITION

WIRKUNGEN BEI KURZZEITEXPOSITION:
Reizt möglicherweise mechanisch. Inhalation von Rauchen kann zu Lungenentzündung führen.

WIRKUNGEN NACH WIEDERHOLTER ODER LANGZEITEXPOSITION

Wiederholter oder andauernder Hautkontakt kann zu Hautsensibilisierung führen. Wiederholte oder andauernde Inhalation kann asthmatische Beschwerden hervorrufen. Risiko der Lungenschädigung bei wiederholter oder längerer Exposition. Möglicherweise krebserzeugend für den Menschen.

LECKAGE

Verschüttetes Material aufsaugen. Reste sorgfältig sammeln. An sicheren Ort bringen. Persönliche Schutzausrüstung: Atemschutzgerät, P2-Filter für schädliche Partikel.

R-Sätze Betriebsanweisung:

R34:Verursacht Verätzungen.
R50/53:Sehr giftig für Wasserorganismen, kann in Gewässern längerfristig schädliche Wirkungen haben.
R43:Sensibilisierung durch Hautkontakt möglich.
R40:Verdacht auf krebserzeugende Wirkung.
R10:Entzündlich.
R17:Selbstentzündlich an der Luft. Spontaneously flammable in air.

S-Sätze Betriebsanweisung:

S26:Bei Berührung mit den Augen sofort gründlich mit Wasser abspülen und Arzt konsultieren.
S45:Bei Unfall oder Unwohlsein sofort Arzt zuziehen (wenn möglich, dieses Etikett vorzeigen).
S60:Dieses Produkt und sein Behälter sind als gefährlicher Abfall zu entsorgen.
S61:Freisetzung in die Umwelt vermeiden. Besondere Anweisungen einholen/Sicherheitsdatenblatt zu Rate ziehen.
S36:DE: Bei der Arbeit geeignete Schutzkleidung tragen.
S22:Staub nicht einatmen.
S36/37:Bei der Arbeit geeignete Schutzhandschuhe und Schutzkleidung tragen.
S16:Von Zündquellen fernhalten - Nicht rauchen.
S15:Vor Hitze schützen.
S5:Unter . . . aufbewahren (geeignete Flüssigkeit vom Hersteller anzugeben).

Beschreibung

Nickel is a hard, silvery white, malleable metal chunk or grey powder. Nickel powder is pyrophoric – can ignite spontaneously. It may react violently with titanium, ammonium nitrate, potassium perchlorate, and hydrazoic acid. It is incompatible with acids, oxidising agents, and sulphur. The industrially important nickel compounds are nickel oxide (NiO), nickel acetate (Ni(C2H3O2), nickel carbonate (NiCO3), nickel carbonyl (Ni(CO)4), nickel subsulphide (NiS2), nickelocene (C5H5)2Ni, and nickel sulphate hexahydrate (NiSO4 · 6H2O). Nickel compounds have been well established as human carcinogens. Investigations into the molecular mechanisms of nickel carcinogenesis have revealed that not all nickel compounds are equally carcinogenic: certain water-insoluble nickel compounds exhibit potent carcinogenic activity, whereas highly water-soluble nickel compounds exhibit less potency. The reason for the high carcinogenic activity of certain water-insoluble nickel compounds relates to their bioavailability and the ability of the nickel ions to enter cells and reach chromatin. The water-insoluble nickel compounds enter cells quite efficiently via phagocytic processes and subsequent intracellular dissolution. Nickel is classified as a borderline metal ion because it has both soft and hard metal properties and it can bind to sulphur, nitrogen, and oxygen groups. Nickel ions are very similar in structure and coordination properties to magnesium.

Chemische Eigenschaften

silver white, hard, malleable metal chunks or grey powder

Chemische Eigenschaften

RANEY NICKEL is a hard, ductile, magnetic metal with a silver-white color.

Physikalische Eigenschaften

Nickel metal does not exist freely in nature. Rather, it is located as compounds in ores ofvarying colors, ranging from reddish-brown rocks to greenish and yellowish deposits, andin copper ores. Once refined from its ore, the metallic nickel is a silver-white and hard butmalleable and ductile metal that can be worked hot or cold to fabricate many items. Nickel,located in group 10, and its close neighbor, copper, just to its right in group 11 of the periodictable, have two major differences. Nickel is a poor conductor of electricity, and copper is anexcellent conductor, and although copper is not magnetic, nickel is. Nickel’s melting point is1,455°C, its boiling point is 2,913°C, and its density is 8.912 g/cm3.

Isotopes

There are 31 isotopes of nickel, ranging from Ni-48 to Ni-78. Five of these arestable, and the percentage of their contribution to the element’s natural existence onEarth are as follows: Ni-58 = 68.077%, Ni-60 = 26.223%, Ni-61 = 1.140%, Ni-62 =3.634%, and Ni 64 = 0.926%. All of the other 26 isotopes of nickel are artificially madeand radioactive with half-lives ranging from a few nanoseconds to 7.6×104 years.

Origin of Name

The name is derived from the ore niccolite, meaning “Old Nick,” referred to as the devil by German miners. The niccolite mineral ore was also called “kupfernickel,” which in German stands for two things; first, it is the name of a gnome (similar to Cobalt), and second, it refers to “Old Nick’s false copper.”

Occurrence

Nickel is the 23rd most abundant element found in the Earth’s crust. It is somewhat plentiful but scattered and makes up one-hundredth of 1% of igneous rocks. Nickel metal is foundin meteorites (as are some other elements). It is believed that molten nickel, along with iron,makes up the central sphere that forms the core of the Earth.There are several types of nickel ores. One is the major ore for nickel called pentlandite(NiS ? 2FeS), which is iron/nickel sulfide. Another is a mineral called niccolite (NiAs), discovered in 1751 and first found in a mining area of Sweden. By far, the largest mining area fornickel is located in Ontario, Canada, where it is recovered from what is thought to be a verylarge meteorite that crashed into the Earth eons ago. This large nickel deposit is one reasonfor the theory of the Earth’s core being molten nickel and iron, given that both the Earth andmeteorites were formed during the early stages of the solar system. Some nickel ores are alsofound in Cuba, the Dominican Republic, and Scandinavia. Traces of nickel exist in soils, coal,plants, and animals.

Charakteristisch

As mentioned, nickel is located in group 10 (VIII) and is the third element in the specialtriad (Fe, Co, Ni) of the first series of the transition elements. Nickel’s chemical and physicalproperties, particularly its magnetic peculiarity, are similar to iron and cobalt.Some acids will attack nickel, but it offers excellent protection from corrosion from air andseawater. This quality makes it excellent for electroplating other metals to form a protectivecoating. Nickel is also an excellent alloy metal, particularly with iron, for making stainless steelas well as a protective armor for military vehicles. It is malleable and can be drawn throughdies to form wires. About one pound of nickel metal can be drawn to about 200 miles of thinwire.

History

Discovered by Cronstedt in 1751 in kupfernickel (niccolite). Nickel is found as a constituent in most meteorites and often serves as one of the criteria for distinguishing a meteorite from other minerals. Iron meteorites, or siderites, may contain iron alloyed with from 5 to nearly 20% nickel. Nickel is obtained commercially from pentlandite and pyrrhotite of the Sudbury region of Ontario, a district that produces much of the world’s nickel. It is now thought that the Sudbury deposit is the result of an ancient meteorite impact. Large deposits of nickel, cobalt, and copper have recently been developed at Voisey’s Bay, Labrador. Other deposits of nickel are found in Russia, New Caledonia, Australia, Cuba, Indonesia, and elsewhere. Nickel is silvery white and takes on a high polish. It is hard, malleable, ductile, somewhat ferromagnetic, and a fair conductor of heat and electricity. It belongs to the iron-cobalt group of metals and is chiefly valuable for the alloys it forms. It is extensively used for making stainless steel and other corrosion- resistant alloys such as Invar?, Monel?, Inconel?, and the Hastelloys?. Tubing made of a copper-nickel alloy is extensively used in making desalination plants for converting sea water into fresh water. Nickel is also now used extensively in coinage and in making nickel steel for armor plate and burglar-proof vaults, and is a component in Nichrome?, Permalloy?, and constantan. Nickel added to glass gives a green color. Nickel plating is often used to provide a protective coating for other metals, and finely divided nickel is a catalyst for hydrogenating vegetable oils. It is also used in ceramics, in the manufacture of Alnico magnets, and in batteries. The sulfate and the oxides are important compounds. Natural nickel is a mixture of five stable isotopes; twenty-five other unstable isotopes are known. Nickel sulfide fume and dust, as well as other nickel compounds, are carcinogens. Nickel metal (99.9%) is priced at about $2/g or less in larger quantities.

Verwenden

The most common use of nickel is as an alloy metal with iron and steel to make stainlesssteel, which contains from 5% to 15% nickel. The higher the percentage of nickel in stainlesssteel, the greater the steel’s resistance to corrosion—particularly when exposed to seawater.Nickel is also alloyed with copper to make Monel metal, which was widely used before stainless steel became more economical and practical. It was used for many purposes as varied ashousehold appliances and general manufacturing. Nickel is also used to electroplate othermetals to provide a noncorrosive protective and attractive finish.The 5-cent coin of the United States is named after the metal nickel. It is composed of25% nickel and 75% copper (maybe it should have been named “copper,” but that name wasalready used in England for a coin). Thousands of years ago, a variety of metals, mainly goldand silver, were used to make coins. Because of the shortage and price increase of some coinagemetals such as gold, silver, and copper, the United States mint now uses less of these metalsand substitutes more iron, zinc, nickel, or steel to make the coins of today.As mentioned, nickel is one of the three unique magnetic metals (Fe, Co, Ni) and is alloyedwith iron, cobalt, and aluminum to make powerful Alnico magnets.When nickel is alloyed with chromium, it forms what is known as Ni-Chrome, which hasa rather high resistance to electrical currents, meaning that electron flow is impeded in theconductor to the point that it results in the rapid vibration of the atoms and molecules of themetal conductor, thus producing heat. This property, along with the element’s high meltingpoint and the fact that it can be drawn into different size wires, makes nickel ideal in themanufacture of heating elements in toasters and other appliances that convert electrical energyinto heat. Because of their superior heat conductivity and resistance to corrosion, nickel alloysare excellent metals for manufacturing cookware.A more recent use of nickel is in the manufacture of the rechargeable nickel-chrome electric cell. One of the electrodes in this type of cell (battery) is nickel (II) oxide (Ni2+ + O2-→ NiO). (Note: When two or more cells are combined in an electrical circuit, they form abattery, but when just one is referred to, it is called a cell.) Although the electrical output ofa Ni-Chrome cell is only 1.4 volts (as compared to 1.5 volts dry cells), Ni-Chrome has manyuses in handheld instruments such as calculators, computers, electronic toys, and other portable electronic devices.Powdered nickel metal acts as a catalyst for the hydrogenation of vegetable oils. (See theentry for hydrogen for more on hydrogenation.

Verwenden

Nickel is used in various alloys, such asGerman silver, Monel, and nickel–chrome;for coins; in storage batteries; in spark plugs;and as a hydrogenation catalyst.

Verwenden

Nickel-plating; for various alloys such as new silver, Chinese silver, German silver; for coins, electrotypes, storage batteries; magnets, lightning-rod tips, electrical contacts and electrodes, spark plugs, machinery parts; catalyst for hydrogenation of oils and other organic substances. See also Raney nickel. manufacture of Monel metal, stainless steels, heat resistant steels, heat and corrosion resistant alloys, nickel-chrome resistance wire; in alloys for electronic and space applications.

Definition

ChEBI: Chemical element (nickel group element atom) with atomic number 28.

Definition

A transition metal that occurs naturally as the sulfide and silicate. It is extracted by the Mond process, which involves reduction of nickel oxide using carbon monoxide followed by the formation and subsequent decomposition of volatile nickel carbonyl. Nickel is used as a catalyst in the hydrogenation of alkenes, e.g. margarine manufacture, and in coinage alloys. Its main oxidation state is +2 and these compounds are usually green. Symbol: Ni; m.p. 1453°C; b.p. 2732°C; r.d. 8.902 (25°C); p.n. 28; r.a.m. 58.6934.

Definition

nickel: Symbol Ni. A malleable ductilesilvery metallic transition element;a.n. 28; r.a.m. 58.70; r.d. 8.9;m.p. 1450°C; b.p. 2732°C. It is foundin the minerals pentlandite (NiS),pyrrhoite ((Fe,Ni)S), and garnierite((Ni,Mg)6(OH)6Si4O11.H2O). Nickel isalso present in certain iron meteorites(up to 20%). The metal isextracted by roasting the ore to givethe oxide, followed by reductionwith carbon monoxide and purificationby the Mond process. Alternativelyelectolysis is used. Nickel metalis used in special steels, in Invar, and,being ferromagnetic, in magnetic alloys,such as Mumetal. It is also aneffective catalyst, particularly for hydrogenation reactions (see also raneynickel). The main compounds areformed with nickel in the +2 oxidationstate; the +3 state also exists (e.g.the black oxide, Ni2O3). Nickel wasdiscovered by Axel Cronstedt(1722–65) in 1751.

Allgemeine Beschreibung

Nickel catalyst, is extremely fine powdered nickel. Nickel is grayish colored. Insoluble in water. Nickel catalyst is used to promote the chemical action in manufacturing synthetics and to process vegetable oil and petroleum. If exposed to air or moisture, Nickel may become hot enough to ignite. Nickel is insoluble in water and does not react with larger volumes of water.

Air & Water Reaktionen

Pyrophoric, Ignites spontaneously in the presence of air; during storage, H2 escapes with fire and explosion hazards; reacts violently with acids forming H2. [Handling Chemicals Safely 1980. p. 807].

Reaktivität anzeigen

Metals, such as METAL CATALYST, are reducing agents and tend to react with oxidizing agents. Their reactivity is strongly influenced by their state of subdivision: in bulk they often resist chemical combination; in powdered form they may react very rapidly. Thus, as a bulk metal Nickel is somewhat unreactive, but finely divided material may be pyrophoric. The metal reacts exothermically with compounds having active hydrogen atoms (such as acids and water) to form flammable hydrogen gas and caustic products. The reactions are less vigorous than the similar reactions of alkali metals, but the released heat can still ignite the released hydrogen. Materials in this group may react with azo/diazo compounds to form explosive products. These metals and the products of their corrosion by air and water can catalyze polymerization reactions in several classes of organic compounds; these polymerizations sometimes proceed rapidly or even explosively. Some metals in this group form explosive products with halogenated hydrocarbons. Can react explosively with oxidizing materials.

Hazard

Flammable and toxic as dust or fume. Dermatitis and pneumoconiosis. A confirmed carcinogen

Hazard

Nickel dust and powder are flammable. Most nickel compounds, particularly the salts, aretoxic. NiSO4 is a known carcinogen.
Although nickel is not easily absorbed in the digestive system, it can cause toxic reactionsand is a confirmed carcinogen in high concentration in the body. Nickel workers can receivesevere skin rashes and lung cancer from exposure to nickel dust and vapors.
Nickel is stored in the brain, spinal cord, lungs, and heart. It can cause coughs, shortnessof breath, dizziness, nausea, vomiting, and general weakness.

Health Hazard

Ingestion of nickel can cause hyperglycemia,depression of the central nervous system,myocardial weakness, and kidney damage.A subcutaneous lethal dose in rabbits isin the range 10 mg/kg. The oral toxicityof the metal, however, is very low. Skincontact can lead to dermatitis and “nickelitch,” a chronic eczema, caused by dermalhypersensitivity reactions. Nickel itch mayresult from wearing pierced earrings. Inhalationof metal dusts can produce irritation ofthe nose and respiratory tract. Nickel andsome of its compounds have been reportedto cause lung cancer in experimental animals.It may also induce cancer in nose,stomach, and possibly the kidney. The experimentaldata on the latter, are not fully confirmative.Nickel refinery flue dust, nickelsulfide (Ni3S2) , and nickeloxide (NiO) produced localizedtumors in experimental animals wheninjected intramuscularly. IARC has classifiednickel and its compounds as carcinogenicto humans (IARC 1990). Inhalation ofmetal dusts can produce lung and sinus cancersin humans, with a latent period of about25 years.
Nickel is susceptible to cross human placentaand produce teratogenesis and embroytoxicity. In vitro study on lipid peroxidationindicated that nickel induced peroxidativedamage to placental membrane causing decreased placental viability, altered permeabilityand subsequent embroy toxicity (Chenand Lin 1998). In a latter study, Chen et al.(2003) evaluated nickel-induced oxidativestress and effects of antioxidants in humanlymphocytes. The levels of intracellular reactiveoxygen species, lipid peroxidation andhydroxyl radicals were examined for one hourfollowing acute treatment with Nicl2. Thestudy showed that glutathione, catalase andmannitol each provided protection against theoxidative stress induced by Ni.
The efficacy of organic chelating ligandsin cleaning human skin contaminated withnickel has been investigated (Healy et al.1998). Commercial liquid soap added withL-histidine was found to be more effectivethan the untreated soap. Similarly sodiumethylenediamine tetraacetic acid (EDTA)salt or L-histidine added to phosphate buffersaline solution was more effective in cleaningnickel contaminated human skin than thephosphate saline alone.
.

Health Hazard

Fire will produce irritating, corrosive and/or toxic gases. Inhalation of decomposition products may cause severe injury or death. Contact with substance may cause severe burns to skin and eyes. Runoff from fire control may cause pollution.

Brandgefahr

Flammable/combustible material. May ignite on contact with moist air or moisture. May burn rapidly with flare-burning effect. Some react vigorously or explosively on contact with water. Some may decompose explosively when heated or involved in a fire. May re-ignite after fire is extinguished. Runoff may create fire or explosion hazard. Containers may explode when heated.

Landwirtschaftliche Anwendung

Nickel (Ni) is a silver-white, ductile, malleable, yet tough metallic element of Group 10 (formerly Group VIII) of the Periodic Table. Mostly, nickel goes into the making of steel and other corrosion resistant alloys. Finely divided nickel is used as a hydrogenation catalyst. Nickel is a beneficial trace element for plants.
Its presence in the urease enzyme underlines its importance as a functional element. It is essential for grain viability, in barley and at concentrations less than 100 μg/kg, the grain level and the germination frequency decrease progressively. The quantity of Ni in a few fertilizers is as given: 2 ppm in nitrochalk, 13 ppm in superphosphate and 10 ppm in FYM.
Nickel is the metal component of urease that hydrolyzes urea to give ammonia and carbon dioxide. Compounds that react with nickel in the urease molecule inhibit the hydrolysis of urea.
Nickel enhances the nodule weight and the seed yield of soybeans, chickpeas and temperate cereals. It is present in plants in the range of 0.1 to 1O ppm of the dry weight.
High levels of Ni may induce Zn or Fe deficiency because of cation competition, and may create nickel toxicity. The browning and necrosis of the leaf tips and margins are the toxicity symptoms on the plant. High Ni content also causes the distortion of young leaves and the death of the terminal shoots of the plant. The emerging leaves may fail to unroll and become necrotic, with the necrosis starting from near the base and spreading toward the leaf tip. Nickel toxicity in cereals and grasses varies in the intensity of chlorosis along the length of the leaf with a series of transverse bands.
Sewage sludge contains heavy metals like Ni, Cd, etc. that are absorbed by plants grown in soils contaminated with these heavy metals. The toxicity caused by these metals is in turn, passed on to animals that feed on such plants. Any regulation for sludge use should ensure that the soil pH is not lower than 6.5, as heavy metals are insoluble at pH greater than 6.5.

Sicherheitsprofil

Confirmed carcinogen with experimental carcinogenic, neoplastigenic, and tumorigenic data. Poison by ingestion, intratracheal, intraperitoneal, subcutaneous, and intravenous routes. An experimental teratogen. Ingestion of soluble salts causes nausea, vomiting, and diarrhea. Mutation data reported. Hypersensitivity to nickel is common and can cause allergic contact dermatitis, pulmonary asthma, conjunctivitis, and inflammatory reactions around nickel-containing medcal implants and prostheses. Powders may ignite spontaneously in air. Reacts violently with F2, NH4NO3, hydrazine, NH3, (H2 + dioxane), performic acid, P, Se, S, (Ti + KCLO3). Incompatible with oxidants (e.g., bromine pentafluoride, peroxyformic acid, potassium perchlorate, chlorine, nitryl fluoride, ammonium nitrate), Raney-nickel catalysts may initiate hazardous reactions with ethylene + aluminum chloride, pdioxane, hydrogen, hydrogen + oxygen, magnesium silicate, methanol, organic solvents + heat, sulfur compounds. Nickel catalysts have caused many industrial accidents.

mögliche Exposition

Nickel is used as an alloy additive in steel manufacture; in the production of coins and other utensils. Nickel forms alloys with copper, manganese, zinc, chromium, iron, molybdenum, etc. Stainless steel is the most widely used nickel alloy. An important nickel copper alloy is Monel metal, which contains 66% nickel and 32% copper and has excellent corrosion resistance properties. Permanent magnets are alloys chiefly of nickel, cobalt, aluminum, and iron. Elemental nickel is used in electroplating, anodizing aluminum casting operations for machine parts; and in coinage; in the manufacture of acid-resisting and magnetic alloys; magnetic tapes; surgical and dental instruments; nickel cadmium batteries; nickel soaps in crankcase oil; in ground-coat enamels; colored ceramics; and glass. It is used as a catalyst in the hydrogenation synthesis of acrylic esters for plastics. Exposure to nickel may also occur during mining, smelting, and refining operations. The route by which most people in the general population receive the largest portion of daily nickel intake is through food. Based on the available data from composite diet analysis, between 300 and 600 μg nickel per day are ingested. Fecal nickel analysis, a more accurate measure of dietary nickel intake, suggests about 300 μg per day. The highest level of nickel observed in water was 75 μg/L. Average drinking water levels are about 5 μg/L. A typical consumption of 2 L daily would yield an additional 10 μg of nickel, of which up to 1 μg would be absorbed.

Carcinogenicity

Metallic nickel is reasonably anticipated to be a human carcinogenbased on sufficient evidence of carcinogenicity from studies in experimental animals.

Versand/Shipping

UN3089 Metal powders, flammable, n.o.s., Hazard Class: 4.1; Labels: 4.1-Flammable solid. UN3077 Environmentally hazardous substances, solid, n.o.s., Hazard Class: 9; Labels: 9-Miscellaneous hazardous material, Technical Name Required.

Inkompatibilitäten

Nickel dust is a spontaneously flammable solid and a dangerous fire hazard.

Waste disposal

Nickel compoundsencapsulation followed by disposal in a chemical waste landfill. However, nickel from various industrial wastes may also be recovered and recycled as described in the literature.

Nickel Upstream-Materialien And Downstream Produkte

Upstream-Materialien

Downstream Produkte


Nickel Anbieter Lieferant Produzent Hersteller Vertrieb Händler.

Global( 244)Lieferanten
Firmenname Telefon Fax E-Mail Land Produktkatalog Edge Rate
Henan DaKen Chemical CO.,LTD.
+86-371-55531817
info@dakenchem.com CHINA 21701 58
Henan Tianfu Chemical Co.,Ltd.
0371-55170693
0371-55170693 info@tianfuchem.com CHINA 20672 55
Mainchem Co., Ltd.
+86-0592-6210733
+86-0592-6210733 sales@mainchem.com CHINA 32447 55
Hefei TNJ Chemical Industry Co.,Ltd.
86-0551-65418684 18949823763
86-0551-65418684 info@tnjchem.com China 1852 55
career henan chemical co
+86-371-86658258
sales@coreychem.com CHINA 29979 58
Chemwill Asia Co.,Ltd.
86-21-51086038
86-21-51861608 chemwill_asia@126.com;sales@chemwill.com;chemwill@hotmail.com;chemwill@gmail.com CHINA 23978 58
Haihang Industry Co.,Ltd
86-531-88032799
+86 531 8582 1093 export@haihangchem.com CHINA 8922 58
Hubei xin bonus chemical co. LTD
86-13657291602
027-59338440 sales@guangaobio.com CHINA 23049 58
Sinopharm Chemical Reagent Co,Ltd. 86-21-63210123
86-21-63290778 86-21-63218885 sj_scrc@sinopharm.com China 9847 79
Rush Metal 021-60516075
021-60516075 info@rushmetal.com CHINA 21 58

7440-02-0(Nickel)Verwandte Suche:


  • Nickel wire, 0.01mm (0.0004 in.) dia., Hard, Temper: as drawn
  • Nickel tubing, OD: 1.59mm (0.0626 in.) ID: 0.51mm (0.02 in.)
  • Nickel wire, 1.0mm (0.04 in.) dia., Annealed
  • Nickel, p.a.
  • ACTIMET 8040P
  • ACTIMET C
  • CHLORIDE TITRANT
  • BETZ 0207
  • ARGENTI NITRAS
  • SILVER(I) NITRATE
  • SILVER NITRATE STANDARD
  • SILVER NITRATE R1, 42.5 G/L
  • SILVER NITRATE R1
  • SILVER NITRATE ON SILICA GEL
  • SILVER STANDARD
  • SILVER STANDARD SOLUTION
  • SILVER NITRATE TITRANT
  • SILVER, AA STANDARD
  • NI-5249P
  • NICKEL (SKELETAL), MOLYBDENUM PROMOTED
  • NICKEL ON SILICA, REDUCED
  • C.I. 77775
  • Carbonyl nickel powder
  • Malleable nickel
  • Nickel, Hard
  • Silver Nitrate Solution, 0.25N
  • Silver Nitrate Solution, 1N
  • Nickel tubing (99.5%)
  • Nickel wire (99%)
  • Nickel wire (99.995%)
  • Nickel wire (99+%)
  • NickelfoilNmmthick
  • NickelfoilNmmthickxcmwidecagxcm
  • NickelfoilNmmthickxmmwide
  • NickelpelletsNmm
  • Nickelpowderfine
  • NickelpowderNmesh
  • NickelpowderNmicron
  • NickelrodNmmdia
  • NickeltubingNmmODxmmwall
  • Nickelwireclothxmeshmmwirediaxmmwide
  • NickelwireNmmdia
  • Raney Nickel®
  • raney-nickel ready for use
  • NICKEL POWDER 99.9%-325MESH
  • NICKEL, FOIL, 0.25MM THICK, 99.995%
  • NICKEL, FOIL, 1.0MM THICK, 99.995%
  • NICKEL, FOIL, 1.0MM THICK, 99.98%
  • NICKEL EVAPORATION SLUG 6.35MM DIAM. &
  • Ni (0.1 mm foil)
  • Nickel, powder, <150micron, 99.99%
  • NICKEL, WIRE, 0.5MM DIAM., 99.9+%
  • NICKEL, FOIL, 0.5MM THICK, 99.995%
  • NICKEL, WIRE, 0.127MM DIAM., 99.99+%
  • NICKEL, WIRE, 0.25MM DIAM., 99.9+%
  • Activated Nickel Catalyst Activated Nickel Catalyst
  • NICKEL, WIRE, 1.0MM DIAM., 99.995%
  • Nickel, rod, 6.35mm diam., 99.99+% metals basis
Copyright 2019 © ChemicalBook. All rights reserved