ChemicalBook > Product Catalog >Organic Chemistry >Hydrocarbons and derivatives >Aromatic hydrocarbons >Benzene


Benzene Suppliers list
Company Name: Henan DaKen Chemical CO.,LTD.
Tel: +86-371-55531817
Products Intro: Product Name:Benzene
Purity:99.00% Package:100g,500g,1KG,10KG,100KG
Company Name: Henan Tianfu Chemical Co.,Ltd.
Tel: 0371-55170693
Products Intro: CAS:71-43-2
Purity:99% Package:500G;1KG;5KG;25KG
Company Name: Mainchem Co., Ltd.
Tel: +86-0592-6210733
Products Intro: Product Name:Benzene
Tel: +86 21 5161 9050/ 5187 7795
Products Intro: Product Name:Benzene
Purity:98+% Package:25g;50g;100g;500g;1kg;10kg;50kg
Company Name: Anhui Royal Chemical Co., Ltd.
Tel: +86-025-86736275
Products Intro: Product Name:crude benzene
Purity:99.00% Package:25kg/drum;200kg/drum
Benzene Basic information
Product Name:Benzene
Synonyms:Benzene in dimethyl sulfoxide;Residual Solvent Class 1 - Benzene;Benzene [Sequencing Solvent];Benzene for HPLC, >=99.9%;Benzene puriss. p.a., Reag. Ph. Eur., >=99.7%;Benzene ReagentPlus(R), thiophene free, >=99%;Benzene, HPLC, 99.5% min.;Benzene 〈H2O<30ppm〉
Product Categories:Industrial/Fine Chemicals;Organics;Analytical Chemistry;Solvents for HPLC & Spectrophotometry;Solvents for Spectrophotometry;Standard Solution of Volatile Organic Compounds for Water & Soil Analysis;Standard Solutions (VOC);Chemistry;Aluminum Bottles;Benzene and Benzene Solutions;Solvent Bottles;Solvent by Type;Solvent Packaging Options;A-B;Aluminum Bottles;Solvent Bottles;ACS Grade;Amber Glass Bottles;Analytical Reagents;Analytical Reagents for General Use;Analytical/Chromatography;Multi-Compendial;Puriss p.a.;Puriss p.a. ACS;NMR;Solvent by Application;Spectrophotometric Solvents;Spectroscopy Solvents (IR;UV/Vis);Residue Analysis (Japan only);A-BAnalytical Standards;BA - BHChemical Class;Alpha Sort;AromaticsAlphabetic;B;Chemical Class;Hydrocarbons;NeatsAnalytical Standards;Solvents;Volatiles/ Semivolatiles;ACS Grade Solvents;ACS GradeSemi-Bulk Solvents;ACS GradeSolvents;Amber Glass Bottles;Carbon Steel Cans with NPT Threads;A-BAlphabetic;BA - BH;Anhydrous Grade SolventsSolvents;AnhydrousSolvents;Returnable Container Solvents;Sure/Seal? Bottles;A-B, Puriss p.a. ACS;Analytical Reagents for General Use;Puriss p.a. ACS;Spectrophotometric Grade Solvents;Spectrophotometric GradeSolvents;CarcinogensSolvent Bottles;Cancer Research;CHROMASOLV PlusCHROMASOLV Solvents (HPLC, LC-MS);CHROMASOLV(R) Plus;LC-MS Plus and Gradient;Solvents by Special Grades (Japan Customers Only);Spectrophotometric Grade;Analytical Standard;Processing/Packaging Contaminants;Alpha Sort;Alphabetic;Analytical Standards;Applications;Aromatics;BA - BH;Benzene;Beverage Analysis;Chemical Class;Chromatography;Environmental Standards;Food &;Neats;Volatiles/ Semivolatiles;Anhydrous;Anhydrous Solvents;Products;Returnable Containers;Sure/Seal Bottles
Mol File:71-43-2.mol
Benzene Structure
Benzene Chemical Properties
Melting point 5.5 °C(lit.)
Boiling point 80 °C(lit.)
density 0.874 g/mL at 25 °C(lit.)
vapor density 2.77 (vs air)
vapor pressure 166 mm Hg ( 37.7 °C)
refractive index n20/D 1.501(lit.)
Fp 12 °F
storage temp. 0-6°C
solubility Miscible with alcohol, chloroform, dichloromethane, diethyl ether, acetone and acetic acid.
pka43(at 25℃)
form Liquid
color APHA: ≤10
Relative polarity0.111
OdorPaint-thinner-like odor detectable at 12 ppm
explosive limit1.4-8.0%(V)
Water Solubility 0.18 g/100 mL
λmaxλ: 280 nm Amax: 1.0
λ: 290 nm Amax: 0.15
λ: 300 nm Amax: 0.06
λ: 330 nm Amax: 0.02
λ: 350-400 nm Amax: 0.01
Merck 14,1066
BRN 969212
Stability:Stable. Substances to be avoided include strong oxidizing agents, sulfuric acid, nitric acid, halogens. Highly flammable.
CAS DataBase Reference71-43-2(CAS DataBase Reference)
NIST Chemistry ReferenceBenzene(71-43-2)
EPA Substance Registry SystemBenzene(71-43-2)
Safety Information
Hazard Codes F,T
Risk Statements 45-46-11-36/38-48/23/24/25-65-39/23/24/25-23/24/25
Safety Statements 53-45-36/37-16-7
RIDADR UN 1114 3/PG 2
WGK Germany 3
RTECS CY1400000
Autoignition Temperature560 °C
HS Code 2902 20 00
HazardClass 3
PackingGroup II
Hazardous Substances Data71-43-2(Hazardous Substances Data)
ToxicityLD50 orally in young adult rats: 3.8 ml/kg (Kimura)
MSDS Information
SigmaAldrich English
ALFA English
Benzene Usage And Synthesis
Chemical PropertiesBenzene,C6H6, also known as benzol, phenyl hydride, phene, cyclohexatriene and coal naptha,is a colorless,flammable liquid. It is an aromatic hydrocarbon that boils at 80.1 DC. It is used as a solvent and an intermediate in manufacturing organic compounds such as styrene and phenol.
Chemical PropertiesBenzene is a colorless, flammable liquid with a pleasant odor. It is used as a solvent in many areas of industries, such as rubber and shoe manufacturing, and in the production of other important substances, such as styrene, phenol, and cyclohexane. It is essential in the manufacture of detergents, pesticides, solvents, and paint removers. It is present in fuels such as gasoline up to the level of 5%.
Chemical PropertiesBenzene is a clear, volatile, colorless, highly flammable liquid with a pleasant, characteristic odor.
UsesManufacturing of ethylbenzene (for styrene monomer), dodecylbenzene (for detergents), cyclo- hexane (for nylon), phenol, nitrobenzene (for ani- line), maleic anhydride, chlorobenzene, diphenyl, benzene hexachloride, benzene-sulfonic acid, and as a solvent.
UsesBenzene is also known as benzol, benzole, coal tar naphtha, and phenyl hydride, benzene is a clear, colorless, flammable liquid made by passing coke gas through oil, which is then distilled to produce benzene and toluol. The benzene is separated from the toluol by fractional distillation. Benzene is soluble in alcohol, ether, chloroform, and glacial acetic acid, but it is insoluble in water. Benzene was used as a solvent for many photographic operations in the 19th century. In the collodion process, benzene was used to dissolve rubber to both subcoat and supercoat negatives. It was also used as a solvent for Canada balsam in the Cutting method of sealing ambrotypes and cementing lens elements. Benzene was also used as a solvent for wax, gums, resins, and amber and in particular for retouching varnishes applied to silver bromide gelatin negatives.
DefinitionChEBI: A six-carbon aromatic annulene in which each carbon atom donates one of its two 2p electrons into a delocalised pi system. A toxic, flammable liquid byproduct of coal distillation, it is used as an industrial solvent. Benzene is a carcinogen that also damages bone marrow and the central nervous system.
General DescriptionA clear colorless liquid with a petroleum-like odor. Flash point less than 0°F. Less dense than water and slightly soluble in water. Hence floats on water. Vapors are heavier than air.
Air & Water ReactionsHighly flammable. Slightly soluble in water.
Reactivity ProfileBenzene reacts vigorously with allyl chloride or other alkyl halides even at minus 70°C in the presence of ethyl aluminum dichloride or ethyl aluminum sesquichloride. Explosions have been reported [NFPA 491M 1991]. Ignites in contact with powdered chromic anhydride [Mellor 11:235 1946-47]. Incompatible with oxidizing agents such as nitric acid. Mixtures with bromine trifluoride, bromine pentafluoride, iodine pentafluoride, iodine heptafluoride and other interhalogens can ignite upon heating [Bretherick 5th ed. 1995]. Benzene and cyanogen halides yield HCl as a byproduct (Hagedorn, F. H. Gelbke, and Federal Republic of Germany. 2002. Nitriles. In Ullman Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA.). The reaction of Benzene and trichloroacetonitrile evolves toxic chloroform and HCl gasses. (Hagedorn, F., H.-P. Gelbke, and Federal Republic of Germany. 2002. Nitriles. In Ullman Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA.).
HazardA confirmed carcinogen. Highly toxic. Flammable, dangerous fire risk. Explosive limits in air 1.5 to 8% by volume.
Health HazardThe acute toxicity of benzene is low. Inhalation of benzene can cause dizziness, euphoria, giddiness, headache, nausea, drowsiness, and weakness. Benzene can cause moderate irritation to skin and severe irritation to eyes and mucous membranes. Benzene readily penetrates the skin to cause the same toxic effects as inhalation or ingestion. The chronic toxicity of benzene is significant. Exposure to benzene affects the blood and blood-forming organs such as the bone marrow, causing irreversible injury; blood disorders including anemia and leukemia may result. The symptoms of chronic benzene exposure may include fatigue, nervousness, irritability, blurred vision, and labored breathing. Benzene is regulated by OSHA as a carcinogen (Standard 1910.1028) and is listed in IARC Group 1 ("carcinogenic to humans"). This substance is classified as a "select carcinogen" under the criteria of the OSHA Laboratory Standard.
Health HazardDizziness, excitation, pallor, followed by flushing, weakness, headache, breathlessness, chest constriction, nausea, and vomiting. Coma and possible death.
Health HazardExposure to low concentrations of benzene vapor or liquid causes dizziness, lightheadedness, headache, loss of appetite, stomach upset, and irritation to the nose and throat. Prolonged exposure to high concentrations of benzene leads to functional irregularities in the heart beat and in severe cases to death. Benzene is a known carcinogen to humans. It causes leukemia and blood disorders such as aplastic anemia. The major types of leukemia related to benzene exposure are (i) acute myelogenous leukemia (AML); (ii) acute lymphocytic leukemia (ALL); (iii) chronic myelogenous leukemia, also called chronic myeloid leukemia (CML); (iv) chronic lymphocytic leukemia (CLL), and hairy cell leukemia (HCL). Occupational exposure to benzene is frequent, such as in road-tanker drivers and Chinese glueand shoe-making factory workers. Exposure to benzene has been linked with the development of rarer forms of leukemia, such as AML and ALL. It has also been linked to lymphoma and rare blood diseases
Fire HazardBenzene is a highly flammable liquid (NFPA rating = 3), and its vapors may travel a considerable distance to a source of ignition and "flash back." Vapor-air mixtures are explosive above the flash point. Carbon dioxide and dry chemical extinguishers should be used to fight benzene fires.
Fire HazardBehavior in Fire: Vapor is heavier than air and may travel considerable distance to a source of ignition and flash back.
Safety ProfileConfirmed human carcinogen producing myeloid leukemia, Hodgkin's dsease, and lymphomas by inhalation. Experimental carcinogenic, neoplastigenic, and tumorigenic data. A human poison by inhalation. An experimental poison by skin contact, intraperitoneal, intravenous, and possibly other routes. Moderately toxic by ingestion and subcutaneous routes. A severe eye and moderate sktn irritant. Human systemic effects by inhalation and ingestion: blood changes, increased body temperature. Experimental teratogenic and reproductive effects. Human mutation data reported. A narcotic. In industry, inhalation is the primary route of chronic benzene poisoning. Poisoning by skin contact has been reported. Recent (1 987) research indicates that effects are seen at less than 1 ppm. Exposures needed to be reduced to 0.1 ppm before no toxic effects were observed. Elimination is chiefly through the lungs. A common air contaminant. heat or flame. Explodes on contact with diborane, bromine pentafluoride, permanganic acid, peroxornonosulfuric acid, and peroxodisulfuric acid. Forms sensitive, explosive mixtures with iodine pentafluoride, silver perchlorate, nitryl perchlorate, nitric acid, liquid oxygen, ozone, and arsenic pentafluoride + potassium methoxide (explodes above 30℃). Ignites on contact with sodium peroxide + water, dioxygenyl tetrafluoroborate, iodine heptafluoride, and dioxygen difluoride. Vigorous or incandescent reaction with hydrogen + Raney nickel (above 210℃), uranium hexafluoride, and bromine trifluoride. Can react vigorously with oxidzing materials, such as Cla, Cr03,02, NClO4,03, perchlorates, (ACl3 + FClO4), (H2SO4 + permanganates), K2O2(, NH4OH + acetic acid), Na2O2. Moderate explosion hazard A dangerous fire hazard when when exposed to heat or flame. Use with adequate venulation. To fight fire, use foam, CO2, dry chemical. Poisoning occurs most commonly via inhalation of the vapor, although benzene can penetrate the skin and cause poisoning. Locally, benzene has a comparatively strong irritating effect, producing erythema and burning, and, in more severe cases, edema and even blistering. Exposure to high concentrations of the vapor (3000 ppm or higher) may result from failure of equipment or spillage. Such exposure, while rare in industry, may cause acute poisoning, characterized by the narcotic action of benzene on the central nervous system. The anesthetic action of benzene is sirmlar to that of other anesthetic gases, consisting of a preluninary stage of excitation followed by depression and, if exposure is continued, death through respiratory failure. The chronic, rather than the acute, form of benzene poisoning is important in industry. It is a recognized leukemogen. There is no specific blood picture occurring in cases of chronic benzol poisoning. The bone marrow may be hypoplastic, normal, or hyperplastic, the changes reflected in the peripheral blood. Anemia, leucopenia, macrocytosis, reticulocytosis, thrombocytopenia, hgh color index, and prolonged bleeding time may be present. Cases of myeloid leukemia have been reported. For the worker, repeated blood examinations are necessary, inclulng hemoglobin determinations, white and red cell counts, and dlfferential smears. Where a worker shows a progressive drop in either red or white cells, or where the white count remains below <5000/mm3 or the red count remains below 4.0 d o n / m m 3 , on two successive monthly examinations, the worker should be immediately removed from benzene exposure. Elimination is chefly through the lungs, when fresh air is breathed. The portion that is absorbed is oxidized, and the oxidation products are combined with sulfuric and glycuronic acids and eliminated in the urine. This may be used as a lagnostic sign. Benzene has a definite cumulative action, and exposure to a relatively hgh concentration is not serious from the point of view of causing damage to the blood-forming system, provided the exposure is not repeated. In acute poisoning, the worker becomes confused and dizzy, complains of tightening of the leg muscles and of pressure over the forehead, then passes into a stage of excitement. If allowed to remain exposed, he quickly becomes stupefied and lapses into coma. In nonfatal cases, recovery is usually complete with no permanent disabhty. In chronic poisoning the onset is slow, with the symptoms vague; fatigue, headache, dizziness, nausea and loss of appetite, loss of weight, and weakness are common complaints in early cases. Later, pallor, nosebleeds, bleeding gums, menorrhagia, petechiae, and purpura may develop. There is great inlvidual variation in the signs and symptoms of chronic benzene poisoning.
Potential ExposureBenzene is used as a constituent in motor fuels; as a solvent for fats; inks, oils, paints, plastics, and rubber, in the extraction of oils from seeds and nuts; in photogravure printing. It is also used as a chemical intermediate. By alkylation, chlorination, nitration, and sulfonation, chemicals, such as styrene, phenols, and malefic anhydride are produced. Benzene is also used in the manufacture of detergents, explosives, pharmaceuticals; in the manufacture of cyclohexane and ethylbenzene; and dye-stuffs. Increased concern for benzene as a significant environmental pollutant arises from public exposure to the presence of benzene in gasoline and the increased content in gasoline due to requirements for unleaded fuels for automobiles equipped with catalytic exhaust converters.
First aidIf this chemical gets into the eyes, remove any contact lenses at once and irrigate immediately for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts the skin, remove contaminated clothing and wash immediately with soap and water. Seek medical attention immediately. If this chemical has been inhaled, remove from exposure, begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. When this chemical has been swallowed, rinse mouth, get medical attention. Do not induce vomiting.
storagework with benzene should be conducted in a fume hood to prevent exposure by inhalation, and splash goggles and impermeable gloves should be worn at all times to prevent eye and skin contact. Benzene should be used only in areas free of ignition sources.
ShippingUN1114 Benzene, Hazard Class: 3; Labels: 3— Flammable liquid
Purification MethodsFor most purposes, *benzene can be purified sufficiently by shaking with conc H2SO4 until free from thiophene, then with H2O, dilute NaOH and water, followed by drying (with P2O5, sodium, LiAlH4, CaH2, 4X Linde molecular sieve, or CaSO4, or by passage through a column of silica gel, and for a preliminary drying, CaCl2 is suitable), and distillation. A further purification step to remove thiophene, acetic acid and propionic acid, is crystallisation by partial freezing. The usual contaminants in dry thiophene-free *benzene are non-benzenoid hydrocarbons such as cyclohexane, methylcyclohexane, and heptanes, together with naphthenic hydrocarbons and traces of toluene. Carbonyl-containing impurities can be removed by percolation through a Celite column impregnated with 2,4-dinitrophenylhydrazine, phosphoric acid and H2O. (Prepared by dissolving 0.5g DNPH in 6mL of 85% H3PO4 by grinding together, then adding and mixing 4mL of distilled H2O and 10g Celite.) [Schwartz & Parker Anal Chem 33 1396 1961.] *Benzene has been freed from thiophene by refluxing with 10% (w/v) of Raney nickel for 15minutes, after which the nickel is removed by filtration or centrifugation. Dry *benzene is obtained by doubly distilling high purity *benzene from a solution containing the blue ketyl formed by the reaction of sodium-potassium alloy with a small amount of benzophenone. Thiophene has been removed from *benzene (absence of bluish-green coloration when 3mL of *benzene is shaken with a solution of 10mg of isatin in 10mL of conc H2SO4) by refluxing the *benzene (1.25L) for several hours with 40g HgO (freshly precipitated) dissolved in 40mL glacial acetic acid and 300mL of water. The precipitate is filtered off, the aqueous phase is removed and the *benzene is washed twice with H2O, dried and distilled. Alternatively, *benzene dried with CaCl2 has been shaken vigorously for 0.5hour with anhydrous AlCl3 (12g/L) at 25-35o, then decanted, washed with 10% NaOH, and water, dried and distilled. The process is repeated, giving thiophene-free *benzene. [Holmes & Beeman Ind Eng Chem 26 172 1934.] After shaking successively for about an hour with conc H2SO4, distilled water (twice), 6M NaOH, and distilled water (twice), *benzene is distilled through a 3-ft glass column to remove most of the water. Absolute EtOH is added and the *benzene-alcohol azeotrope is distilled. (This low-boiling distillation leaves any non-azeotrope-forming impurities behind.) The middle fraction is shaken with distilled water to remove EtOH, and again redistilled. Final slow and very careful fractional distillation from sodium, then LiAlH4 under N2, removed traces of water and peroxides. [Peebles et al. J Am Chem Soc 82 2780 1960.] *Benzene liquid and vapour are very TOXIC and HIGHLY FLAMMABLE, and all operations should be carried out in an efficient fume cupboard and in the absence of naked flames in the vicinity. [Beilstein 5 H 175, 5 I 95, 5 II 119, 5 III 469.] Rapid purification: To dry benzene, alumina, CaH2 or 4A molecular sieves (3% w/v) may be used (dry for 6hours). Then benzene is distilled, discarding the first 5% of distillate, and stored over molecular sieves (3A, 4A) or Na wire.
IncompatibilitiesIncompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides, many fluorides and perchlorates, nitric acid.
Flammability and ExplosibilityBenzene is a highly flammable liquid (NFPA rating = 3), and its vapors may travel a considerable distance to a source of ignition and "flash back." Vapor-air mixtures are explosive above the flash point. Carbon dioxide and dry chemical extinguishers should be used to fight benzene fires.
Waste DisposalDissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber. All federal, state, and local environmental regulations must be observed. Dilution with alcohol or acetone to minimize smoke is recommended. Bacterial degradation is also possible.
Tag:Benzene(71-43-2) Related Product Information