ChemicalBook
Chinese Japanese Germany

Sodium borohydride

Uses description history Uses reducing agent Toxicity Production methods
Sodium borohydride
Sodium borohydride
CAS No.
16940-66-2
Chemical Name:
Sodium borohydride
Synonyms
AF;SBH;Rpn10;NaBH4;BH4Na;borol;VenPure;hidkitexdf;VenPure(R);VenPure? AF
CBNumber:
CB5322426
Molecular Formula:
BH4Na
Formula Weight:
37.83
MOL File:
16940-66-2.mol

Sodium borohydride Properties

Melting point:
>300 °C (dec.)(lit.)
Boiling point:
500°C
Density 
1.035 g/mL at 25 °C
Flash point:
158 °F
storage temp. 
Store at RT.
form 
tablets
color 
White
PH
11 (10g/l, H2O, 20℃)
explosive limit
3.02%(V)
Water Solubility 
550 g/L (25 ºC)
Sensitive 
Hygroscopic
Merck 
14,8592
Stability:
Stability Stable, but reacts readily with water (reaction may be violent). Incompatible with water, oxidizing agents, carbon dioxide, hydrogen halides, acids, palladium, ruthenium and other metal salts, glass. Flammable solid. Air-sensitive.
InChIKey
YOQDYZUWIQVZSF-UHFFFAOYSA-N
CAS DataBase Reference
16940-66-2(CAS DataBase Reference)
NIST Chemistry Reference
Sodium tetrahydroborate(16940-66-2)
EPA Substance Registry System
Borate(1-), tetrahydro-, sodium(16940-66-2)
SAFETY
  • Risk and Safety Statements
  • Hazard and Precautionary Statements (GHS)
Hazard Codes  F,T,N,C,Xn
Risk Statements  60-61-15-34-23/24/25-24/25-35-21/22-51/53-42/43-49-63-62-36/38-43-19-68-50/53
Safety Statements  53-43-45-43A-36/37/39-26-22-50-36/37-61
RIDADR  UN 3129 4.3/PG 3
WGK Germany  2
RTECS  ED3325000
10-21
TSCA  Yes
HazardClass  4.3
PackingGroup  I
HS Code  28500090
Hazardous Substances Data 16940-66-2(Hazardous Substances Data)
Symbol(GHS):
Signal word: Danger
Hazard statements:
Code Hazard statements Hazard class Category Signal word Pictogram P-Codes
H260 In contact with water releases flammable gases which may ignite spontaneously Substances And Mixtures Which, In Contact With Water,Emit Flammable Gases Category 1 Danger P223, P231+P232, P280, P335+ P334,P370+P378, P402+P404, P501
H261 In contact with water releases flammable gas Substances And Mixtures Which, In Contact With Water,Emit Flammable Gases Category 2
Category 3
Danger
Warning
P231+P232, P280, P370+P378,P402+P404, P501
H290 May be corrosive to metals Corrosive to Metals Category 1 Warning P234, P390, P404
H301 Toxic if swalloed Acute toxicity,oral Category 3 Danger P264, P270, P301+P310, P321, P330,P405, P501
H302 Harmful if swallowed Acute toxicity,oral Category 4 Warning P264, P270, P301+P312, P330, P501
H311 Toxic in contact with skin Acute toxicity,dermal Category 3 Danger P280, P302+P352, P312, P322, P361,P363, P405, P501
H313 May be harmful in contact with skin Acute toxicity,dermal Category 5 P312
H314 Causes severe skin burns and eye damage Skin corrosion/irritation Category 1A, B, C Danger P260,P264, P280, P301+P330+ P331,P303+P361+P353, P363, P304+P340,P310, P321, P305+ P351+P338, P405,P501
H315 Causes skin irritation Skin corrosion/irritation Category 2 Warning P264, P280, P302+P352, P321,P332+P313, P362
H317 May cause an allergic skin reaction Sensitisation, Skin Category 1 Warning P261, P272, P280, P302+P352,P333+P313, P321, P363, P501
H318 Causes serious eye damage Serious eye damage/eye irritation Category 1 Danger P280, P305+P351+P338, P310
H319 Causes serious eye irritation Serious eye damage/eye irritation Category 2A Warning P264, P280, P305+P351+P338,P337+P313P
H330 Fatal if inhaled Acute toxicity,inhalation Category 1, 2 Danger P260, P271, P284, P304+P340, P310,P320, P403+P233, P405, P501
H332 Harmful if inhaled Acute toxicity,inhalation Category 4 Warning P261, P271, P304+P340, P312
H334 May cause allergy or asthma symptoms or breathing difficulties if inhaled Sensitisation, respiratory Category 1 Danger P261, P285, P304+P341, P342+P311,P501
H341 Suspected of causing genetic defects Germ cell mutagenicity Category 2 Warning P201,P202, P281, P308+P313, P405,P501
H360 May damage fertility or the unborn child Reproductive toxicity Category 1A, 1B Danger
H410 Very toxic to aquatic life with long lasting effects Hazardous to the aquatic environment, long-term hazard Category 1 Warning P273, P391, P501
Precautionary statements:
P201 Obtain special instructions before use.
P223 Keep away from any possible contact with water, because of violent reaction and possible flash fire.
P260 Do not breathe dust/fume/gas/mist/vapours/spray.
P280 Wear protective gloves/protective clothing/eye protection/face protection.
P231+P232 Handle under inert gas. Protect from moisture.
P320 Specific treatment is urgent (see … on this label).
P303+P361+P353 IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower.
P304+P340 IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing.
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuerinsing.
P308+P313 IF exposed or concerned: Get medical advice/attention.
P370+P378 In case of fire: Use … for extinction.
P405 Store locked up.
P402+P404 Store in a dry place. Store in a closed container.

Sodium borohydride price More Price(58)

Manufacturer Product number Product description CAS number Packaging Price Updated Buy
Sigma-Aldrich 200972 Sodium borohydride solution 0.5 M in 2-methoxyethyl ether 16940-66-2 100ml $67.9 2018-11-13 Buy
Sigma-Aldrich 1.06371 Sodium borohydride 16940-66-2 1EA $263 2017-11-08 Buy
TCI Chemical S0480 Sodium Borohydride >95.0%(T) 16940-66-2 25g $27 2017-12-01 Buy
TCI Chemical S0480 Sodium Borohydride >95.0%(T) 16940-66-2 100g $52 2017-12-01 Buy
Alfa Aesar 013432 Sodium borohydride, 98% 16940-66-2 100g $66.2 2018-11-16 Buy

Sodium borohydride Chemical Properties,Uses,Production

Uses

Industry Applications Benefit
Chemical manufacture Production of sodium dithionite Reduce sulfur dioxide to produce sodium dithionite
Production of potassium borohydrate Reaction intermediate
Production of borane Raw material, source of boron
Pharmaceutical industry Production of various antibiotics Reduce aldehydes, ketones and acyl chloride to give the related alcohols
Hydrogen storage Solid state hydrogen storage candidate Store, release and reabsorb hydrogen under moderate conditions
Fuel cell The direct borohydride fuel cell Releases hydrogen in the presence of metal catalysts
Research & laboratory Oxymercuration reaction Replace mercury (Hg) with h
Synthesis of gold nanoparticles Reduce chlorine acid to prepare gold nanoparticals
Sewage treatment Mercury sewage treatment Reduce Hg2+ to remove Hg in wastwater
Wood pulp Decolorizer Pretreatment process
Plastics Blowing agent Releases hydrogen to blow in material
 

description

Sodium borohydride is an inorganic compound shown as a white to off-white fine crystalline powder or lump. Rapid reaction with methanol will produce hydrogen at room temperature. It is hygroscopic and easily deliquesced upon absorbing water. Boiling point: 500 °C (vacuum); melting point: 400 °C; soluble in water and lower alcohols, ammonia, insoluble in ether, benzene, hydrocarbons; relative density (water = 1): 1.07; Sodium borohydride is usually used as reducing agent in synthesis of inorganic and organic synthesis. Sodium borohydride has a strong selective reduction, being able to selectively reduce a carbonyl group is to a hydroxyl group without reacting with the carbon-carbon double bond and triple bond reaction. A small amount of sodium borohydride can restore the nitrile to the aldehyde with the excess amount being reduced to the amine.

history

Sodium borohydride is discovered by H. C. Brown and his boss Schlesinger in 1942 at University of Chicago found. At that time the purpose is to study the property of carbon monoxide and borane complexes, but they found the reducing ability of borane on organic carbonyl compound. However, owing to that borane are rare substances at that time, so it did not cause enough attention of organic chemists. Development of borane chemistry should thank to the World War II, when the US Department of Defense needed to find a volatile uranium compounds with molecular weight as small as possible for enriching fissile material uranium 235. Uranium borohydride U (BH4) 4 meets this requirement quite well. The synthesis of this compound requires use of lithium hydride. However, the supply of lithium hydride is quite limited so the cheaper sodium hydride is used as the raw material, and sodium borohydride was re-discovered in the process. Later, because of the resolution of technical issue on processing of uranium hexafluoride, the Ministry of defense gave up the plan of enriching uranium-235 through uranium borohydride, and Brown's research shifts to how to facilitate the preparation of sodium borohydride. Army Signal Corps Company is interested in the ability of large-scale in situ hydrogen producing of this compound. Under their funding, related industrialization research was conducted, resulting in the later industrial procedure of making sodium borohydride process: 4NaH + B (OCH3) 3 → NaBH4 + 3NaOCH3 with the two solid product. Obtain pure sodium borohydride with ethereal solvent recrystallization.
The above information is edited by the Chemicalbook of Dai Xiongfeng.

Uses

The hydrogen of odium borohydride hydrogen here was-1 thus having a strong reducing property which can reduce some oxidative inorganic. It is mainly used for reducing-COOH to-CH2OH in organic synthesis. It plays such a significant role in organic synthesis that it is called as "universal reductant." It is a good reducing agent which has stable performance and selective reduction. It can be used as the reducing agents of aldehydes, ketones and acid chlorides; also as foaming agent for plastic materials, hydrogenating agent of making dihydrostreptomycin, intermediate of making potassium borohydride, raw materials in synthesizing borane, as well as the treatment agent of paper industry and mercury-containing waste water.
Sodium borohydride provides organic chemists a very convenient and mild means for reduction of aldehydes and ketones. Before this, people usually use metal/alcohol approach to reduce carbonyl compound. Sodium borohydride enables the reduction of carbonyl of aldehydes and ketones under very mild conditions to produce primary alcohols and secondary alcohols. Reduction procedure is as below: First dissolve the substrate in a solvent (typically methanol or ethanol), then cool with an ice bath. Finally add sodium borohydride powder to the mixture until the reaction is completed. The reaction process can be monitored by thin layer chromatography. If the solvent is not an alcohol, we need to additionally supply methanol or ethanol along with the reaction. Sodium borohydride is a reducing agent with medium strength, and thus exhibiting good chemical selectivity. It only reduces active aldehyde and ketone carbonyl group, and does not react with the ester, amide.
It is a good reducing agent which has stable performance and selective reduction. It can be used as the reducing agents of aldehydes, ketones and acid chlorides; also as foaming agent for plastic materials, hydrogenating agent of making dihydrostreptomycin, intermediate of making potassium borohydride, raw materials in synthesizing borane, as well as the treatment agent of paper industry and mercury-containing waste water.
Common used reducing agents. It can be used as the reducing agent of aldehydes, ketones and acid chlorides, foaming agent of plastic materials, hydrogenating agent for making dihydrostreptomycin, the intermediate of making potassium borohydride, raw materials of borane synthesis, treatment agent of paper industry and mercury-containing waste water, and also paper bleaching agent.
For the manufacture of other borohydride salts, reducing agents, bleaching wood pulp, and plastics blowing agent.

reducing agent

Sodium borohydride is relatively mild reducing agent. It has a good efficacy on reducing aldehydes and ketones. Its commonly-used solvents include alcohol, tetrahydrofuran, DMF, and water. It generally does not reduce an ester group, a carboxyl group, and amide. However, when combined with appropriate solvent or catalyzed by Lewis acid in high temperature, it can be used for reducing weak carbonyl group such as ester.
It reduces aldehydes, ketones mildly and high-efficiently. Basic operations: Use methanol or ethanol as a solvent, aldehyde, ketone carbonyl compound mixed with sodium borohydride with quality 1: 1 is sufficient. Stepwise heating method can be used applied for heating, for example, start with 50 degrees, and perform the reflux reaction after a sufficient time such as 1 hour; simultaneously use TLC to monitor the progress. The reaction is generally very thorough. Generally, so long as the amount of solvent the reaction can avoid the occurrence of a white sticky paste after complete of reaction, that’s fine. It is not necessary to keep strictly dry during the reaction; there were even cases where water was used as solvent. For example, for the reduction of formyl benzoic acid where the formyl (formaldehyde) is reduced, first neutralize the carboxyl group with sodium hydroxide, and then perform reaction in water to success reduce the formyl group.
Sodium borohydride can rapidly decompose to release hydrogen gas under acidic conditions so it can not react in acidic conditions but can be used under alkaline conditions. Sodium borohydride is rapidly decomposed to release hydrogen gas when contacted with acid so it cannot reduce the acid alone and should be used in combination with iodine. First react it with a carboxylic acid and add iodine once the bubble stops, continue to release gas. Then add boric acid ester decomposed by hydrochloride to get alcohol. Note: the reaction should be kept in dry THF, and THF must be first reflux with sodium until to the benzophenone get blue before use! Otherwise creaming, instead of clear liquid, will appear during the reaction between carboxylic acid and sodium borohydride in.
Use the sodium borohydride and anhydrous zinc chloride (dried over 200 degrees) to react in anhydrous THF for 3 hours to produce a zinc borohydride. This solution mixture does not need to be isolated and purified before being as zinc borohydride. When used to restore the carboxylic acid or ester in THF under reflux temperature, the yield is good but there may be some double bonds affected. For example, reducing cinnamic acid will result a fraction of double-bond reduced product.

Toxicity

Contact with sodium borohydride will cause sore throat, cough, tachypnea, headache, abdominal pain, diarrhea, dizziness, conjunctival hyperemia, and pain. When apply it, we should prevent dust, increase ventilation or wear protective masks. Pay attention to protection of the eyes, wear protective glasses closed, and don’t eat, drink and smoke at work. Quickly leave the scene after the poisoning, take semi-supine rest, breathe fresh air, flush eyes with plenty of water, stripped of contaminated clothing, and rinse the body; If it enters into the digestive tract, immediately rinse the month, drink lots of water to induce vomiting and immediately go to hospital for treatment. Wear protective masks filter when leakage occurs to clean up the leak.

Production methods

Sodium borohydride boric acid ester method: Pour boric acid and appropriate amount of methanol to distillation kettle, slowly heated at 54 °C for total reflux 2h. Then collect the azeotropic liquid of methyl borate and methanol solution. After treatment of azeotropic liquid by sulfuric acid, using fine distillation can yield relative pure product. Feed sodium hydrogen obtained with reaction between hydrogen gas and sodium into the condensation reaction tank. Heat with stirring to about 220 °C and then begin to add boric acid ester. Stop heating once the temperature reaches 260 °C; Keep the feed temperature below 280 °C, continue the stirring after the addition of boric acid ester to ensure the thorough reaction. After the completion of reaction, cool the temperature below 100 °C, centrifuge to obtain a condensation product pellet. Add an appropriate amount of water to the hydrolysis reactor and slowly transfer the filter pellet into the hydrolysis reactor, keep the temperature lower than 50 °C, heat to 80 °C after the complete of adding the filter pellet. Centrifuge and separate, transfer the hydrolysis solution to stratification vessel to keep still for 1h for automatic layering. The hydrolysis solution in the lower layer corresponds to sodium borohydride. The reaction formula is as below:
H3BO3+3CH3OH→B(OCH3)3+3H2O
2Na+H2→2NaH
4NaH+B(OCH3)3→NaBH4+3CH3ONa

Chemical Properties

White solid

Uses

Nanocrystalline superlattices in gold colloid solution have been prepared by ligand-induction using AuCl3 reduced with sodium borohydride.1 Nucleophilic addition of hydride ion from sodium borohydride is an inexpensive alternative method for the Baylis-Hillman reaction to form [E]-α-methylcinnamic acids.2

Uses

Sodium Borohydride is used as a reagent in the reduction of amino acids and their derivatives. Also used in the catalysis of ammonia borane dehydrogenation.

Uses

Reducing agent for aldehydes, ketones and Schiff bases in nonaqueous solvents. Also reduces acids, esters, acid chlorides, disulfides, nitriles, inorganic anions. Further used to generate diborane, as foaming agent, as scavenger for traces of aldehyde, ketones and peroxides in organic chemicals.

General Description

Sodium borohydride is a white to grayish crystalline powder. Sodium borohydride is decomposed by water to form sodium hydroxide, a corrosive material, and hydrogen, a flammable gas. The heat of this reaction may be sufficient to ignite the hydrogen. The material itself is easily ignited and burns vigorously once ignited. Sodium borohydride is used to make other chemicals, treat waste water, and for many other uses.

Air & Water Reactions

Hydrolysis generates enough heat to ignite adjacent combustible material [Haz. Chem. Data 1966]. Dissolves in water with liberation of heat, may steam and spatter. Solution is basic (alkaline). Reaction of water with the borohydride liberates flammable hydrogen gas. Sodium borohydride burns in air [Lab. Gov. Chemist 1965].

Reactivity Profile

Sodium borohydride is a powerful reducing agent. A chemical base. Absorbs moisture readily forming caustic solution. which attacks aluminum and zinc. A violent polymerization of acetaldehyde results from the reactions of acetaldehyde with alkaline materials such as sodium hydroxide. Calcium oxide or sodium hydroxide react with phosphorus pentaoxide extremely violently when initiated by local heating [Mellor 8 Supp.3:406 (1971]. Using potassium hydroxide to dry impure tetrahydrofuran, which contains peroxides, may be hazardous. Explosions have occurred in the past. Sodium hydroxide behaves in a similar way as potassium hydroxide [NSC Newsletter, Chem. Soc. 1967]. Ignition occurs if a mixture of the hydride and sulfuric acid is not cooled. Contact of glycerol and Sodium borohydride leads to ignition, other glycols and methanol are exothermic but do not ignite.

Health Hazard

Solid irritates skin. If ingested can form large volume of gas and lead to a gas embolism.

Fire Hazard

Behavior in Fire: Decomposes and produces highly flammable hydrogen gas.

Purification Methods

After adding NaBH4 (10g) to freshly distilled diglyme (120mL) in a dry three-necked flask fitted with a stirrer, nitrogen inlet and outlet, the mixture is stirred for 30minutes at 50o until almost all of the solid has dissolved. Stirring is stopped, and, after the solid has settled, the supernatant liquid is forced under N2 pressure through a sintered-glass filter into a dry flask. [The residue is centrifuged to obtain more of the solution which is added to the bulk.] The solution is cooled slowly to 0o and then decanted from the white needles that separated. The crystals are dried by evacuating for 4hours to give anhydrous NaBH4. Alternatively, after the filtration at 50o the solution is heated at 80o for 2hours to give a white precipitate of substantially anhydrous NaBH4 which is collected on a sintered-glass filter under N2, then evacuated at 60o for 2hours [Brown et al. J Am Chem Soc 77 6209 1955]. NaBH4 has also been crystallised from isopropylamine by dissolving it in the solvent at reflux, cooling, filtering and allowing the solution to stand in a filter flask connected to a Dry-ice/acetone trap. After most of the solvent has passed over into the cold trap, crystals are removed with forceps, washed with dry diethyl ether and dried under vacuum. [Kim & Itoh J Phys Chem 91 126 1987.] Somewhat less pure crystals were obtained more rapidly by using Soxhlet extraction with only a small amount of solvent and extracting for about 8hours. The crystals that formed in the flask are filtered off, then washed and dried as before. [Stockmayer et al. J Am Chem Soc 77 1980 1955.] Other solvents used for crystallisation include water and liquid ammonia.

Sodium borohydride Preparation Products And Raw materials

Raw materials

Preparation Products


Sodium borohydride Suppliers

Global( 331)Suppliers
Supplier Tel Fax Email Country ProdList Advantage
Hefei TNJ Chemical Industry Co.,Ltd.
86-0551-65418684 18949823763
86-0551-65418684 info@tnjchem.com China 1465 55
Hebei Guanlang Biotechnology Co., Ltd.
+86-0311-66562153 whatsapp +8615203118427
+86-0311-66562153 sales@crovellbio.com CHINA 417 50
Henan DaKen Chemical CO.,LTD.
+86-371-55531817
inquiry@dakenchem.com CHINA 22119 58
Nanjing Gold Pharmaceutical Technology Co. Ltd.
025-84209270 15906146951
025-84209270 wgp@nanjing-pharmaceutical.com CHINA 117 55
Shanghai Bojing Chemical Co.,Ltd.
+86-21-37122233
+86-21-37127788 Candy@bj-chem.com CHINA 500 55
Henan Tianfu Chemical Co.,Ltd.
0371-55170693
0371-55170693 info@tianfuchem.com CHINA 20795 55
Shanghai Time Chemicals CO., Ltd.
+86-021-57951555
+86-021-57951555 jack.li@time-chemicals.com CHINA 1374 55
Mainchem Co., Ltd.
+86-0592-6210733
+86-0592-6210733 sales@mainchem.com CHINA 32764 55
Shanghai Yingrui Biopharma Co., Ltd.
+86-21-33585366 E-mail:sales03@shyrchem.com
+86-21-34979012 sales03@shyrchem.com CHINA 663 60
ATK CHEMICAL COMPANY LIMITED
+86 21 5161 9050/ 5187 7795
+86 21 5161 9052/ 5187 7796 ivan@atkchemical.com CHINA 10714 60

View Lastest Price from Sodium borohydride manufacturers

Image Release date Product Price Min. Order Purity Supply Ability Manufacturer
2018-10-08 TOP Sodium borohydride high qualityCas NO.:16940-66-2
16940-66-2
US $100.00 / KG 1KG 99% 1000kg/month Hebei Chisure Biotechnology Co.LTD
2018-09-03 Potassium borohydride
13762-51-1
US $10.00-10.00 / G 10UG 98% 1000kg/minyh Hebei Chisure Biotechnology Co.LTD
2018-09-03 Sodium borohydride
16940-66-2
US $10.00-10.00 / KG 10KG 98% 1000kg/month Hebei Chisure Biotechnology Co.LTD

16940-66-2(Sodium borohydride)Related Search:


Copyright 2017 © ChemicalBook. All rights reserved