Chinese English Japanese Germany Korea


사염화탄소 구조식 이미지
카스 번호:
Carbon tetrachloride
r10;CCm0;CCl4;R 10;R-10;CFC-10;freon10;Thawpit;Univerm;Carbona
포뮬러 무게:
MOL 파일:

사염화탄소 속성

-23 °C
끓는 점
76-77 °C(lit.)
1.594 g/mL at 25 °C(lit.)
증기 밀도
5.32 (vs air)
4.05 psi ( 20 °C)
n20/D 1.460(lit.)
−2 °F
저장 조건
Miscible with ethanol, benzene, chloroform, ether, carbon disulfide (U.S. EPA, 1985), petroleum ether, solvent naphtha, and volatile oils (Yoshida et al., 1983a).
물리적 상태
Clear colorless
Ethereal, sweet, pungent odor detectable at 140 to 584 ppm (mean = 252 ppm)
Odor Threshold
0.8 g/L (20 ºC)
최대 파장(λmax)
λ: 265 nm Amax: 1.0
λ: 270 nm Amax: 0.30
λ: 280 nm Amax: 0.07
λ: 290 nm Amax: 0.02
λ: 300-400 nm Amax: 0.01
Henry's Law Constant
2.15 at 30 °C (headspace-GC, Sanz et al., 1997)
노출 한도
NIOSH REL: STEL 1 hour 2 ppm, IDLH 200 ppm; OSHA PEL: TWA 10 ppm, C 25 ppm, 5-minute/4-hour peak 200 ppm; ACGIH TLV: TWA 5 ppm.
CAS 데이터베이스
56-23-5(CAS DataBase Reference)
Carbon tetrachloride(56-23-5)
Carbon tetrachloride (56-23-5)
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 T,N,F
위험 카페고리 넘버 23/24/25-40-48/23-52/53-59-39/23/24/25-11-43
안전지침서 23-36/37-45-59-61-16-7
유엔번호(UN No.) UN 1846 6.1/PG 2
WGK 독일 3
RTECS 번호 FG4900000
F 고인화성물질 8-9
위험 등급 6.1(a)
포장분류 II
HS 번호 29031400
유해 물질 데이터 56-23-5(Hazardous Substances Data)
독성 LC50 for mice: 9528 ppm (Svirbely); LD50 in rats, mice, dogs (g/kg): 2.92, 12.1-14.4, 2.3 orally; LD50 in mice (g/kg): 4.1 i.p., 30.4 s.c. (IARC, 1979)
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H225 고인화성 액체 및 증기 인화성 액체 구분 2 위험 P210,P233, P240, P241, P242, P243,P280, P303+ P361+P353, P370+P378,P403+P235, P501
H317 알레르기성 피부 반응을 일으킬 수 있음 피부 과민성 물질 구분 1 경고 P261, P272, P280, P302+P352,P333+P313, P321, P363, P501
H351 암을 일으킬 것으로 의심됨 (노출되어도 암을 일으키지 않는다는 결정적인 증거가 있는 노출경로가 있다면 노출경로 기재) 발암성 물질 구분 2 경고 P201, P202, P281, P308+P313, P405,P501
H370 장기(또는, 영향을 받은 알려진 모든 장기를 명시)에 손상을 일으킴(노출되어도 특정 표적장기 독성을 일으키지 않는다는 결정적인 노출경로가 있다면 노출경로를 기재) 특정 표적장기 독성 - 1회 노출 구분 1 위험 P260, P264, P270, P307+P311, P321,P405, P501
H372 장기간 또는 반복 노출되면 장기(또는, 영향을 받은 알려진 모든 장기를 명시)에 손상을 일으킴 특정 표적장기 독성 - 반복 노출 구분 1 위험 P260, P264, P270, P314, P501
H373 장기간 또는 반복 노출되면 장기(또는, 영향을 받은 알려진 모든 장기를 명시)에 손상을 일으킬 수 있음 특정 표적장기 독성 - 반복 노출 구분 2 경고 P260, P314, P501
H412 장기적 영향에 의해 수생생물에 유해함 수생 환경유해성 물질 - 만성 구분 3 P273, P501
H420 대기 상층부의 오존층을 파괴하여 공공의 건강 및 환경에 유해함 오존층에 유해 함 구분 1 경고 P502
P210 열·스파크·화염·고열로부터 멀리하시오 - 금연 하시오.
P260 분진·흄·가스·미스트·증기·...·스프레이를 흡입하지 마시오.
P261 분진·흄·가스·미스트·증기·...·스프레이의 흡입을 피하시오.
P273 환경으로 배출하지 마시오.
P280 보호장갑/보호의/보안경/안면보호구를 착용하시오.
P311 의료기관(의사)의 진찰을 받으시오.
P301+P310 삼켰다면 즉시 의료기관(의사)의 진찰을 받으시오.
P403+P233 용기는 환기가 잘 되는 곳에 단단히 밀폐하여 저장하시오.
P502 정보의 재사용의 회복 / 제조 / 공급 업체를 참조하십시오

사염화탄소 C화학적 특성, 용도, 생산

화학적 성질

Carbon tetrachloride, CC14, also known as tetrachloromethane, perchloro methane, and benzinoform, is a colorless liquid with a boiling point of 77 °C (170 OF). It is used as a solvent for lacquers, resin, and rubbers,and as a dry cleaning agent.

물리적 성질

Carbon tetrachloride is a volatile colourless clear heavy liquid with a characteristic sweet non-irritant odour. The odour threshold in water is 0.52 mg/litre and in air is > 10 ppm. Carbon tetrachloride is miscible with most aliphatic solvents and it is a solvent for benzyl resins, bitumen, chlorinated rubber, rubber-based gums, oils and fats.The solubility in water is low. Carbon tetrachloride is non-flammable and is stable in the presence of air and light. Decomposition may produce phosgene, carbon dioxide and hydrochloric acid.


Carbon tetrachloride is used as a solvent, infire extinguishers, in dry cleaning, and in themanufacture of fluorocarbon propellents.As solvent for oils, fats, lacquers, varnishes, rubber waxes, resins; starting material in manufacture of organic Compounds. Pharmaceutic aid (solvent).


Decades ago, this compound was mixed with ether and sold as Carbona, a dry-cleaning fluid for clothes. It is no longer permissible to sell or buy CCL4 for household use. It is classed as a carcinogen by the U.S. government and is toxic if ingested, inhaled, or absorbed by the skin. Carbon tetrachloride is used to manufacture CFHCs, to fumigate grains to kill insects, and in the production of semiconductors.


ChEBI: A chlorocarbon that is methane in which all the hydrogens have been replaced by chloro groups.

일반 설명

A clear colorless liquid with a characteristic odor. Denser than water (13.2 lb / gal) and insoluble in water. Noncombustible. May cause illness by inhalation, skin absorption and/or ingestion. Used as a solvent, in the manufacture of other chemicals, as an agricultural fumigant, and for many other uses.

공기와 물의 반응

Insoluble in water.

반응 프로필

Carbon tetrachloride is a commonly used liquid in fire extinguishers to combat small fires. Carbon tetrachloride has no flash point, Carbon tetrachloride is not flammable. However, when heated to decomposition, Carbon tetrachloride will emit fumes of extremely toxic phosgene and of hydrogen chloride. Forms explosive mixtures with chlorine trifluoride, calcium hypochlorite, decaborane, dinitrogen tetraoxide, fluorine. Forms impact-sensitive explosive mixtures with particles of many metals: lithium, sodium, potassium, beryllium, zinc, aluminum, barium. Vigorous exothermic reaction with allyl alcohol, boron trifluoride, diborane, disilane, aluminum chloride, dibenzoyl peroxide, potassium tert-butoxide, liquid oxygen, zirconium. [Bretherick, 5th ed., 1995, p. 666]. Potentially dangerous reaction with dimethylformamide or dimethylacetamide in presence of iron [Cardillo, P. et al., Ann. Chim. (Rome), 1984, 74, p. 129].


Carbon tetrachloride exhibits low acute tox icity by all routes of exposure. The acute poisoning effects include dizziness, fatigue,headache, nervousness, stupor, nausea, vom iting, diarrhea, renal damage, and liverinjury. The dosages that produce toxic act ions in animals vary with the species. Theoral LD50 values in rats, rabbits, and mice are2800, 5760, and 8263 mg/kg, respectively(NIOSH 1986).
Ingestion of carbon tetrachloride can befatal to humans, death resulting from acuteliver or kidney necrosis. Chronic exposuremay cause liver and kidney damage. Expo sure to a 10-ppm concentration for severalweeks produced accumulation of fat in the liv ers of experimental animals (ACGIH 1986).Substances such as ethanol and barbituratescause potentiation of toxicity of carbon tetra chloride. Skin contact can cause dermatitis.
Azri and coworkers (1990) have investi gated carbon tetrachloride–induced hepato toxicity in rat liver slices. Liver slices frommale rats were incubated and exposed tocarbon tetrachloride vapors, and the degreeof injury to cellular tissue was determined.Covalent binding of CCl4 radical to proteinsand lipid molecules in a slice caused the cel lular injury. The toxicity depended on thevapor concentration and the time of expo sure. Azri and coworkers reported furtherthat rats pretreated with phenobarbital weremore rapidly intoxicated even at a lower con centration of carbon tetrachloride vapors. Onthe other hand, pretreatment with allyliso propylacetamide inhibited the toxicity of car bon tetrachloride.
Carbon tetrachloride is a suspected humancarcinogen. Oral and subcutaneous adminis tration of this compound in rats caused liverand thyroid cancers in the animals.

인화성 및 폭발성

Carbon tetrachloride is noncombustible. Exposure to fire or high temperatures may lead to formation of phosgene, a highly toxic gas.

화학 반응

Reactivity with Water No reaction; Reactivity with Common Materials: No reactions; Stability During Transport: Stable; Neutralizing Agents for Acids and Caustics: Not pertinent; Polymerization: Not pertinent; Inhibitor of Polymerization: Not pertinent.

공업 용도

Carbon tetrachloride is a clear, heavy liquid with a strong, aromatic odor. Its formula is CC14. It is produced in large quantities for use in the manufacturing of refrigerants and propellants for aerosol cans. It is also used as a feedstock in the synthesis of chlorofluorocarbons and other chemicals, in petroleum refining, pharmaceutical manufacturing, and general solvent use. Until the mid- 1960s, it was also widely used as a cleaning fluid, both in industry, where it served as a degreasing agent, and in the home, where it was used as a spot remover and in fire extinguishers.
Carbon tetrachloride is a highly volatile liquid with a strong etherial odor similar to chloroform. It mixes sparingly with water and is not flammable. When heated to decomposition, it emits highly toxic fumes of phosgene and hydrogen chloride. There is strong evidence that the toxicity of carbon tetrachloride is dramatically increased by its interaction with alcohols, ketones, and a range of other chemicals.
Carbon tetrachloride is known to deplete the ozone layer, where it is responsible for 17% of the ozone-destroying chlorine now in the stratosphere due to human activities. Carbon tetrachloride has a half-life of between 30 and 100 years.Its DOT Label is Poison, and its UN number is 1846.

Safety Profile

Also forms explosive mixtures with chlorine trifluoride, calcium hypochlorite (heatsensitive), calcium dtsllicide (frictionand pressuresensitive), triethyldialuminum trichloride (heatsensitive), decaborane(l4) (impact-sensitive), dinitrogen tetraoxide. Violent or explosive reaction on contact with fluorine. Forms explosive mixtures with ethylene between 25' and 105' and between 30 and 80 bar. Potentially explosive reaction on contact with boranes. 9:l mixtures of methanol and cCl4 react exothermically with aluminum, magnesium, or zinc. Potentially dangerous reaction with dimethyl formamide, 1,2,3,4,5,6 hexachlorocyclohexane, or dtmethylacetamide when iron is present as a catalyst. CCh has caused explosions when used as a fire extingusher on wax and uranium fires. Incompatible with aluminum trichloride, dtbenzoyl peroxide, potassiumtert-butoxide. Vigorous exothermic reaction with allyl alcohol, Al(C2H5)3, (benzoyl peroxide + C2H4), BrF3, diborane, dsilane, liquid O2, Pu, (AgClO4 + HCl), potassiumtert-butoxide, tetraethylenepentamine, tetrasilane, trisilane, Zr. When heated to decomposition it emits toxic fumes of Cl and phosgene. It has been banned from household use by the FDA.

잠재적 노출

Carbon tetrachloride, and organochlorine, is used as a solvent for oils, fats, lacquers, varnishes, rubber, waxes, and resins. Fluorocarbons are chemically synthesized from it. It is also used as an azeotropic drying agent for spark plugs; a dry-cleaning agent; a fire extinguishing agent; a fumigant, and an anthelmintic agent. The use of this solvent is widespread, and substitution of less toxic solvents when technically possible is recommended.


Carbon tetrachloride is reasonably anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity from studies in experimental animals.


Carbon tetrachloride is used in fumigant mixtures such as 1,2-dichloroethane (Granosan) because it reduces the fire hazard (Worthing and Hance, 1991).


Biological. Carbon tetrachloride was degraded by denitrifying bacteria forming chloroform (Smith and Dragun, 1984). An anaerobic species of Clostridium biodegraded carbon tetrachloride by reductive dechlorination yielding trichloromethane, dichloromethane and unidentified products (G?lli and McCarty, 1989). Chloroform also formed by microbial degradation of carbon tetrachloride using denitrifying bacteria (Smith and Dragun, 1984).
Carbon tetrachloride (5 and 10 mg/L) showed significant degradation with rapid adaptation in a static-culture flask-screening test (settled domestic wastewater inoculum) conducted at 25°C. Complete degradation was observed after 14 days of incubation (Tabak et al., 1981).
Chemical/Physical. Under laboratory conditions, carbon tetrachloride partially hydrolyzed to chloroform and carbon dioxide (Smith and Dragun, 1984). Complete hydrolysis yielded carbon dioxide and hydrochloric acid (Kollig, 1993). Carbon tetrachloride slowly reacts with hydrogen sulfide in aqueous solution yielding carbon dioxide via the intermediate carbon disulfide. However, in the presence of two micaceous minerals (biotite and vermiculite) and amorphous silica, the rate of transformation increased. At 25°C and a hydrogen sulfide concentration of 1 mM, the half-lives for carbon tetrachloride were calculated to be 2,600, 160 and 50 days for the silica, vermiculite and biotite studies, respectively. In all three studies, the major transformation pathway is the formation of carbon disulfide which undergoes hydrolysis yielding carbon dioxide (81–86% yield) and hydrogen sulfide ions. Minor intermediates detected include chloroform (5–15% yield),carbon monoxide (1–2% yield) and a nonvolatile compound tentatively identified as formic acid (3–6% yield) (Kriegman-King and Reinhard, 1992).
Anticipated products from the reaction of carbon tetrachloride with ozone or hydroxyl radicals in the atmosphere are phosgene and chloride radicals (Cupitt, 1980). Phosgene is hydrolyzed readily to hydrochloric acid and carbon dioxide (Morrison and Boyd, 1971).
Matheson and Tratnyek (1994) studied the reaction of fine-grained iron metal in an anaerobic aqueous solution (15°C) containing carbon tetrachloride (151 μM). Initially, carbon tetrachloride underwent rapid dehydrochlorination forming chloroform, which further degraded to methylene chloride and chloride ions. The rate of reaction decreased with each dehydrochlorination step. However, after 1 hour of mixing, the concentration of carbon tetrachloride decreased from 151 to approximately 15 μM. No additional products were identified although the authors concluded that environmental circumstances may exist where degradation of methylene chloride may occur. They also reported that reductive dehalogenation of carbon tetrachloride and other chlorinated hydrocarbons used in this study appears to take place in conjunction with the oxidative dissolution or corrosion of the iron metal through a diffusion-limited surface reaction.
The evaporation half-life of carbon tetrachloride (1 mg/L) from water at 25°C using a shallow-pitch propeller stirrer at 200 rpm at an average depth of 6.5 cm is 29 minutes (Dilling, 1977).


Carbon tetrachloride should be handled in the laboratory using the "basic prudent practices".

운송 방법

UN1846 Carbon tetrachloride, Hazard Class: 6.1; Labels: 6.1-Poisonous materials.

Purification Methods

For many purposes, careful fractional distillation gives adequate purification. Carbon disulfide, if present, can be removed by shaking vigorously for several hours with saturated KOH, separating, and washing with water: this treatment is repeated. The CCl4 is shaken with conc H2SO4 until there is no further coloration, then washed with water, dried with CaCl2 or MgSO4 and distilled (from P2O5 if desired). It must not be dried with sodium. An initial refluxing with mercury for 2hours removes sulfides. Other purification steps include passage of dry CCl4 through activated alumina, and distillation from KMnO4. Carbonyl containing impurities can be removed by percolation through a Celite column impregnated with 2,4-dinitrophenylhydrazine (DNPH), H3PO4 and water. (Prepared by dissolving 0.5g DNPH in 6mL of 85% H3PO4 by grinding together, then mixing with 4mL of distilled water and 10g Celite.) [Schwartz & Parks Anal Chem 33 1396 1961]. Photochlorination of CCl4 has also been used: CCl4 to which a small amount of chlorine has been added is illuminated in a glass bottle (e.g. for 24hours with a 200W tungsten lamp near it), and, after washing out the excess chlorine with 0.02M Na2SO3, the CCl4 is washed with distilled water and distilled from P2O5. It can be dried by passing through 4A molecular sieves and distilled. Another purification procedure is to wash CCl4 with aqueous NaOH, then repeatedly with water and N2 gas is bubbled through the liquid for several hours. After drying over CaCl2 it is percolated through silica gel and distilled under dry N2 before use [Klassen & Ross J Phys Chem 91 3664 1987]. [Beilstein 1 IV 56.]

비 호환성

Oxidative decomposition on contact with hot surfaces, flames, or welding arcs. Carbon tetrachloride decomposes forming toxic phosgene fumes and hydrogen chloride. Decomposes violently (producing heat) on contact with chemically active metals, such as aluminum, barium, magnesium, potassium, sodium, fluorine gas, allyl alcohol, and other substances, causing fire and explosion hazard. Attacks copper, lead, and zinc. Attacks some coatings, plastics, and rubber. Becomes corrosive when in contact with water; corrosive to metals in the presence of moisture.

폐기물 처리

Incineration, preferably after mixing with another combustible fuel; care must be exercised to assure complete combustion to prevent the formation of phosgene; an acid scrubber is necessary to remove the halo acids produced. Recover and purify by distillation where possible.

사염화탄소 준비 용품 및 원자재


준비 용품

사염화탄소 공급 업체

글로벌( 214)공급 업체
공급자 전화 팩스 이메일 국가 제품 수 이점
Henan Tianfu Chemical Co.,Ltd.
0371-55170693 CHINA 22631 55
Hubei Jusheng Technology Co.,Ltd.
027-59599243 CHINA 28235 58
Hubei xin bonus chemical co. LTD
027-59338440 CHINA 23048 58
Hebei Xibaijie Biotechnology Co., Ltd.
15203217809 CHINA 406 58
Henan tianfu chemical co. LTD
0371-55170695 CHINA 20537 58
86-18523575427 CHINA 47484 58
career henan chemical co
0086-371-86658258 CHINA 23957 58
Mainchem Co., Ltd. +86-0592-6210733
+86-0592-6210733 CHINA 32445 55
Chengdu RunZeBenTu Chemical Co., Ltd 13096311329 028-88469284 qq:616445927
028-88469284 China 2893 50
Shanghai Aladdin Bio-Chem Technology Co.,LTD 021-20337333/400-620-6333
021-50323701 China 24984 65

사염화탄소 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved