ChemicalBook > Product Catalog >Inorganic chemistry >Inorganic salts >Hydrides, nitrides, azides >Hydride >Lithium aluminium hydride

Lithium aluminium hydride

Lithium aluminium hydride Suppliers list
Company Name: hebei chisure biotechnology co.,ltd
Tel: 0311 66567340
Email: admin@SpeedGainpharma.com
Products Intro: Product Name:High purity 99% Lithium aluminium hydride Cas No.: 16853-85-3
CAS:16853-85-3
Purity:99% Package:1KG;100USD
Company Name: Hebei Guanlang Biotechnology Co., Ltd.
Tel: +86-0311-66562153 whatsapp +8615203118427
Email: sales@crovellbio.com
Products Intro: Product Name:lithium aluminium tetrahydride
CAS:16853-85-3
Purity:99% Package:1kg,5kg,25kg
Company Name: Capot Chemical Co.,Ltd.
Tel: +86 (0)571-855 867 18
Email: sales@capotchem.com
Products Intro: Product Name:Lithium Aluminum Hydride
CAS:16853-85-3
Purity:98%(Min,HPLC) Package:100g;1kg;5kg,10kg,25kg,50kg
Company Name: Henan DaKen Chemical CO.,LTD.
Tel: +86-371-55531817
Email: info@dakenchem.com
Products Intro: Product Name:Lithium aluminium hydride
CAS:16853-85-3
Purity:99% Package:100g,500g,1KG,10KG,100KG
Company Name: Henan Tianfu Chemical Co.,Ltd.
Tel: 0371-55170693
Email: info@tianfuchem.com
Products Intro: CAS:16853-85-3
Purity:99% Package:500G;1KG;5KG;25KG

Lastest Price from Lithium aluminium hydride manufacturers

Lithium aluminium hydride Basic information
Product Name:Lithium aluminium hydride
Synonyms:lithiumtetrahydroaluminate(lithiumaluminium;lithiumtetrahydroaluminate(lithiumaluminiumhydride);ALUMINIUM LITHIUM HYDRIDE;ALUMINIUM LITHIUM TETRAHYDRIDE;LAH;LITHIUM TETRAHYDRIDOALUMINATE;LITHIUM TETRAHYDROALUMINATE;Lithiumaluminumhydride,powder,95%
CAS:16853-85-3
MF:AlH4Li
MW:37.954298
EINECS:240-877-9
Product Categories:Inorganics;Al (Alminum) Compounds;Classes of Metal Compounds;Li (Lithium) Compounds;Reduction;Synthetic Organic Chemistry;Typical Metal Compounds;metal hydrides;Alternative Energy;Aluminum Hydrides;Chemical Synthesis;Materials for Hydrogen Storage;Materials Science;Synthetic Reagents;-;25mL Sure/Seal Reagents;Organometallic Reagents;Aluminum Hydrides;Synthetic Reagents
Mol File:16853-85-3.mol
Lithium aluminium hydride Structure
Lithium aluminium hydride Chemical Properties
Melting point 125 °C (dec.)(lit.)
Boiling point 0°C
density 0.97 g/mL at 20 °C
Fp 99 °F
storage temp. 2-8°C
form tablets (~0.5 g each)
color White to light gray
OdorOdorless solid
Water Solubility Reacts
Sensitive Air & Moisture Sensitive
Merck 14,350
Stability:Stable. Reacts violently with water, liberating hydrogen. Incompatible with strong oxidizing agents, alcohols, acids.
CAS DataBase Reference16853-85-3(CAS DataBase Reference)
NIST Chemistry ReferenceLithium tetrahydroaluminate(16853-85-3)
EPA Substance Registry SystemAluminate(1-), tetrahydro-, lithium, (T-4)-(16853-85-3)
Safety Information
Hazard Codes F,C,Xi,Xn,F+,T
Risk Statements 15-34-14/15-11-36/37-19-40-10-67-66-22-12-35-37-65-48/20-63-36/38-61-60
Safety Statements 43-7/8-6A-45-43B-36/37/39-33-26-16-24/25-27-29-62-53
RIDADR UN 3399 4.3/PG 1
WGK Germany 2
RTECS BD0100000
10-21
TSCA Yes
HS Code 2850 00 20
HazardClass 4.3
PackingGroup I
Hazardous Substances Data16853-85-3(Hazardous Substances Data)
ToxicityTLV-TWA (ACGIH) 2 mg (Al)/m3
MSDS Information
ProviderLanguage
SigmaAldrich English
ACROS English
ALFA English
Lithium aluminium hydride Usage And Synthesis
Chemical PropertiesWhite crystalline powder when pure; monoclinic crystals; grey in the presence of aluminum impurity; stable below 120°C in dry air; turns grey on standing; hygroscopic; density 0.917 g/cm3; melts at 190°C (decomposes); reacts with water and alcohols; soluble in diethylether and tetrahydrofuran (about 30 and 13 g/100g, respectively at 25°C; also soluble in dimethylcellosolve; sparingly soluble in dibutylether; slightly soluble in dioxane (1g/L) and practically insoluble in hydrocarbons; can be solubilized in benzene by crown ether.
Chemical PropertiesLithium aluminum hydride is a white to gray powder. A combustible solid.
UsesLithium aluminum hydride is among the most important industrial reducingagents. It is used extensively in organic syntheses and also in catalytichydrogenation. Reactant or reagent for:
1. The preparation of thermoplastic polyester polyamides from oleic acid
2. Lithium-polymer batteries
3. Hydrodefluorination of gem-difluoromethylene derivatives
4. Asymmetric aldol reactions
5. Synthesis of Li-Al-N-H composites with hydrogen absorption / desorption properties
6. LAH is a powerful reducing agent for many different reduction reactions such as that of ketones to alcohols
UsesA powerful reagent and reducing agent.
UsesReducing agent; in preparation of other hydrides.
General DescriptionA white powder that turns gray on standing. If spread out over a large flat combustible surface, friction can cause ignition. Used to make other chemicals, as a polymerization catalyst, as a hydrogen source, and as a propellant.
Air & Water ReactionsReacts with water vigorously attaining incandescence and ignition of evolved hydrogen [Kelen, Cahiers, 1977, (86), 100]. Reactions with water or moist air (or heated air) are violent and may be explosive [Schmidt, D.L., et al. Inorg. Synth. 1973. p. 14, 51].
Reactivity ProfileLithium aluminium hydride is a powerful reducing agent. React violently on contact with many oxidizing agents. Ignites by friction, especially if powdered. Reacts vigorously with hydroxy compounds such as water, alcohols, carboxylic acids [Mellor 2 Supp. 2:142. 1961]. Caused a violent explosion when used to dry diethylene glycol dimethyl ether: Ignition may have been caused by heat from reaction with impurity water or perhaps decomposition of peroxides in the ether. About 75% of the ether had been removed when the explosion occurred [MCA Case History 1494. 1968]. Reduces carbon dioxide or sodium hydrogen carbonate to methane and ethane at elevated temperatures. These flammable or explosive gases can form when CO2 extinguishers are used to fight hydride fires. Forms explosive complexes with ether, dimethylamine and various tetrazoles. Tetrazoles include, 2-methyl, 2-ethyl, 5-ethyl, 2-methyl-5-vinyl, 5-amino-2-ethyl [US Pat. 3 396 170, 1968].
HazardLithium aluminum hydride is a flammable substance. It ignites spontaneously on grinding and reacts violently with water and many organic substances. Diethyl ether, tetrahydrofuran or another suitable solvent should be used in its synthetic applications. Dry or powdered limestone is an appropriate fire extinguishing agent.
Health HazardContact of solid with eyes and skin causes severe burns similar to those caused by caustic soda.
Health HazardLithium aluminum hydride is highly corrosive to the skin, eyes, and mucous membranes. Contact with moisture forms lithium hydroxide, which can cause severe burns. Powdered LAH forms dusts that can pose an inhalation hazard. Ingestion of this substance may cause aching muscles, nausea, vomiting, dizziness, and unconsciousness and may be fatal. Ingestion can result in gas embolism due to the formation of hydrogen.
No chronic effects of lithium aluminum hydride have been identified
Fire HazardBehavior in Fire: Decomposes at 257°F to form hydrogen gas. The heat generated may cause ignition and/or explosion.
Fire HazardLithium aluminum hydride is a highly flammable solid and may ignite in moist or heated air. Exposure to water results in the release of hydrogen, which can be ignited by the heat from the exothermic reaction. Lithium aluminum hydride should not be used as a drying agent for solvents because fires can easily result (LAH decomposes at about 125° C, a temperature easily reached at a flask's surface in a heating mantle). The decomposition products of LAH can be quite explosive, and the products of its reaction with carbon dioxide have been reported to be explosive. Use dry chemical powder or sand to extinguish fires involving lithium aluminum hydride. Never use water or carbon dioxide extinguishers on an LAH fire
Safety ProfileStable in dry air at room temperature. It decomposes above 125' forming Al, H2, and lithium hydride. Very powerful reducer. Can ignite if pulverized even in a dry box. Reacts violently with air, acids, alcohols, benzoyl peroxide, boron trifluoride etherate, (2 chloromethyl furan + ethyl acetate), diethylene glycol dimethyl ether, diethyl ether, 1,2-dimethoxyethane, dimethyl ether, methyl ethyl ether, (nitriles + H2O), perfluorosuccinamide, (perfluorosuccinamide + H20), tetrahydrofuran, water. To fight fire, use dry chemical, includmg special formulations of dry chemicals as recommended by the supplier of the lithium aluminum hydride. Do not use water, fog, spray, or mist. Incompatible with bis (2-methoxyethyl)ether, CO2, BF3, diethyl etherate, dibenzoyl peroxide, 3,5 dbromocyclopentene, 172-dimethoxy ethane, ethyl acetate, fluoro amides, pyridine, tetrahydrofuran. Used as a reducing agent in the preparation of pharmaceuticals. See also ALUMINUM, LITHIUM COMPOUNDS, and HYDRIDES.
Potential ExposureThis material is used as a catalyst and as a specialty reducing agent in organic synthesis.
First aidIf this chemical gets into the eyes, remove any contact lenses at once and irrigate immediately for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts theskin, remove contaminated clothing and wash immediately with soap and water. Seek medical attention immediately. If this chemical has been inhaled, remove from exposure, begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. When this chemical has been swallowed, get medical attention. Give large quantities of water and induce vomiting. Do not make an unconscious person vomit. Medical observation is recommended for 24 to 48 hours after breathing overexposure, as pulmonary edema may be delayed. As first aid for pulmonary edema, a doctor or authorized paramedic may consider administering a drug or other inhalation therapy
storageLAH should be handled in areas free of ignition sources under an inert atmosphere. Safety glasses, impermeable gloves, and a fire-retardant laboratory coat are required. A dry powder fire extinguisher or pail of sand (and shovel) must be available in areas where LAH is to be handled or stored. Work with large quantities of powdered LAH should be conducted in a fume hood under an inert gas such as nitrogen or argon. Lithium aluminum hydride should be stored in tightly sealed containers in a cool, dry area separate from combustible materials. Dry LAH powder should never be exposed to water or moist air. Lithium aluminum hydride can be a finely powdered reagent that produces a reactive dust on handling. The older practice of grinding lithium aluminum hydride prior to use can cause explosions and should not be employed.
ShippingUN1410 Lithium aluminum hydride (dry), Hazard Class: 4.3; Labels: 4.3-Dangerous when wet material. UN1411 Lithium aluminum hydride, ethereal, Hazard Class: 4.3; Labels: 4.3-Dangerous when wet material, 3- Flammable liquid.
Purification MethodsExtract it with Et2O, and, after filtering, the solvent is removed under vacuum. The residue is dried at 60o for 3hours, under high vacuum [Ruff J Am Chem Soc 83 1788 1961]. It is a strong reducing agent. It IGNITES in the presence of a small amount of water and reacts with it EXPLOSIVELY. [Becher in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 805 1963.]
IncompatibilitiesCombustible solid. Can ignite spontaneously in moist air or heat. Decomposes on heating @ 125C forming aluminum, lithium hydride and flammable hydrogen gas. A strong reducing agent; violent reaction with oxidizers. Violent reaction with water, alcohols, acids, dimethylether, ethers, tetrahydrofuran, benzoyl peroxide; boron trifluoride etherate. Reduces carbon dioxide or sodium hydrogen carbonate to methane and ethane at elevated temperatures. These flammable or explosive gases can form when CO2 extinguishers are used to fight hydride fires. Forms explosive complexes with ether, dimethylamine and various tetrazoles. Tetrazoles include, 2-methyl, 2-ethyl, 5-ethyl, 2-methyl-5-vinyl, 5-amino-2-ethyl .
Flammability and ExplosibilityLithium aluminum hydride is a highly flammable solid and may ignite in moist or heated air. Exposure to water results in the release of hydrogen, which can be ignited by the heat from the exothermic reaction. Lithium aluminum hydride should not be used as a drying agent for solvents because fires can easily result (LAH decomposes at about 125° C, a temperature easily reached at a flask's surface in a heating mantle). The decomposition products of LAH can be quite explosive, and the products of its reaction with carbon dioxide have been reported to be explosive. Use dry chemical powder or sand to extinguish fires involving lithium aluminum hydride. Never use water or carbon dioxide extinguishers on an LAH fire.
Waste DisposalSmall amounts of excess LAH can be destroyed by forming a suspension or solution in an inert solvent such as diethyl ether or hexane, cooling in an ice bath, and slowly and carefully adding ethyl acetate dropwise with stirring. This is followed by the addition of a saturated aqueous solution of ammonium chloride.
Excess lithium aluminum hydride and the products of the treatment described above should be placed in an appropriate container, clearly labeled, and handled according to your institution's waste disposal guidelines. For more information on disposal procedures, see Chapter 7 .
PreparationLithium aluminum hydride is prepared by reaction of lithium hydride with aluminum chloride in diethylether:
4LiH + AlCl3 →(C2H5)2O→LiAlH4+3LiCl
Tag:Lithium aluminium hydride(16853-85-3) Related Product Information
Lithium tri-tert-butoxyaluminum hydride Lithium aluminium hydride LITHIUM TRIETHYLBOROHYDRIDE Lithium Aluminium chloride LITHIUM TRI-TERT-BUTOXYALUMINODEUTERIDE LITHIUM ALUMINUM HYDRIDE BIS(TETRAHYDROFURAN) LITHIUM TETRA(PERFLUORO-T-BUTOXY)ALUMINATE LITHIUM TRIS[(3-ETHYL-3-PENTYL)OXY]ALUMINOHYDRIDE LITHIUM ALUMINIUM HYDRIDE, [3H] LITHIUM ALUMINUM DEUTERIDE LITHIUM TETRAKIS(DIMETHYLAMINO)ALUMINATE LITHIUM TETRACHLOROALUMINATE LITHIUM ALUMINIUM DI-N-BUTYLAMIDE Lithium borohydride Pyrrolidine Lithium chloride Diisobutylaluminium hydride