ChemicalBook
Chinese english Germany Japanese Korea

2-(Acetyloxy)benzoesäure Produkt Beschreibung

Acetylsalicylic acid Struktur
50-78-2
CAS-Nr.
50-78-2
Bezeichnung:
2-(Acetyloxy)benzoesäure
Englisch Name:
Acetylsalicylic acid
Synonyma:
ASA;ECM;Aspr;Xaxa;Aspro;Bayer;Novid;ronal;S-211;Adiro
CBNumber:
CB5114818
Summenformel:
C9H8O4
Molgewicht:
180.16
MOL-Datei:
50-78-2.mol

2-(Acetyloxy)benzoesäure Eigenschaften

Schmelzpunkt:
134-136 °C (lit.)
Siedepunkt:
272.96°C (rough estimate)
Dichte
1.35
Brechungsindex
1.4500 (estimate)
Flammpunkt:
250 °C
storage temp. 
2-8°C
Löslichkeit
H2O: 10 mg/mL at 37 °C
Aggregatzustand
crystalline
Farbe
white
pka
3.5(at 25℃)
Wasserlöslichkeit
3.3 g/L (20 ºC)
Merck 
14,851
BRN 
779271
Stabilität:
Stable. Keep dry. Incompatible with strong oxidizing agents, strong bases, strong acids, various other compounds such as iodides, iron salts, quinine salts, etc.
InChIKey
BSYNRYMUTXBXSQ-UHFFFAOYSA-N
CAS Datenbank
50-78-2(CAS DataBase Reference)
NIST chemische Informationen
Benzoic acid, 2-(acetyloxy)-(50-78-2)
EPA chemische Informationen
Aspirin (50-78-2)
Sicherheit
  • Risiko- und Sicherheitserklärung
  • Gefahreninformationscode (GHS)
Kennzeichnung gefährlicher Xn
R-Sätze: 22-36/37/38
S-Sätze: 26-36/37/39
RIDADR  UN 1851
WGK Germany  1
RTECS-Nr. VO0700000
TSCA  Yes
HazardClass  6.1
PackingGroup  III
HS Code  29182210
Giftige Stoffe Daten 50-78-2(Hazardous Substances Data)
Toxizität LD50 orally in mice, rats: 1.1, 1.5 g/kg (Hart)
Bildanzeige (GHS)
Alarmwort Warnung
Gefahrenhinweise
Code Gefahrenhinweise Gefahrenklasse Abteilung Alarmwort Symbol P-Code
H301 Giftig bei Verschlucken. Akute Toxizität oral Kategorie 3 Achtung P264, P270, P301+P310, P321, P330,P405, P501
H302 Gesundheitsschädlich bei Verschlucken. Akute Toxizität oral Kategorie 4 Warnung P264, P270, P301+P312, P330, P501
H315 Verursacht Hautreizungen. Hautreizung Kategorie 2 Warnung P264, P280, P302+P352, P321,P332+P313, P362
H319 Verursacht schwere Augenreizung. Schwere Augenreizung Kategorie 2 Warnung P264, P280, P305+P351+P338,P337+P313P
H334 Kann bei Einatmen Allergie, asthmaartige Symptome oder Atembeschwerden verursachen. Sensibilisierung der Atemwege Kategorie 1 Achtung P261, P285, P304+P341, P342+P311,P501
H335 Kann die Atemwege reizen. Spezifische Zielorgan-Toxizität (einmalige Exposition) Kategorie 3 (Atemwegsreizung) Warnung
H360 Kann die Fruchtbarkeit beeinträchtigen oder das Kind im Mutterleib schädigen. Fertility (Fruchtbarkeit) Kategorie 1 Achtung
H371 Kann die Organe schädigen. Spezifische Zielorgan-Toxizität Kategorie 2 Warnung P260, P264, P270, P309+P311, P405,P501
H373 Kann die Organe schädigen bei längerer oder wiederholter Exposition. Spezifische Zielorgan-Toxizität (wiederholte Exposition) Kategorie 2 Warnung P260, P314, P501
Sicherheit
P201 Vor Gebrauch besondere Anweisungen einholen.
P202 Vor Gebrauch alle Sicherheitshinweise lesen und verstehen.
P260 Dampf/Aerosol/Nebel nicht einatmen.
P261 Einatmen von Staub vermeiden.
P264 Nach Gebrauch gründlich waschen.
P264 Nach Gebrauch gründlich waschen.
P270 Bei Gebrauch nicht essen, trinken oder rauchen.
P280 Schutzhandschuhe/Schutzkleidung/Augenschutz tragen.
P284 Atemschutz tragen.
P304+P340 BEI EINATMEN: Die Person an die frische Luft bringen und für ungehinderte Atmung sorgen.
P305+P351+P338 BEI KONTAKT MIT DEN AUGEN: Einige Minuten lang behutsam mit Wasser spülen. Eventuell vorhandene Kontaktlinsen nach Möglichkeit entfernen. Weiter spülen.

2-(Acetyloxy)benzoesäure Chemische Eigenschaften,Einsatz,Produktion Methoden

ERSCHEINUNGSBILD

FARBLOSE BIS WEISSE KRISTALLE ODER WEISSES KRISTALLINES PULVER MIT CHARAKTERISTISCHEM GERUCH.

PHYSIKALISCHE GEFAHREN

Staubexplosion der pulverisierten oder granulierten Substanz in Gemischen mit Luft möglich.

CHEMISCHE GEFAHREN

Schwache Säure in wässriger Lösung.

ARBEITSPLATZGRENZWERTE

TLV: 5 mg/m?(als TWA) (ACGIH 2005).
MAK nicht festgelegt (DFG 2005).

AUFNAHMEWEGE

Aufnahme in den Körper durch Inhalation und durch Verschlucken.

INHALATIONSGEFAHREN

Verdampfung bei 20°C vernachlässigbar; eine gesundheitsschädliche Partikelkonzentration in der Luft kann jedoch beim Dispergieren schnell erreicht werden, vor allem als Pulver.

WIRKUNGEN BEI KURZZEITEXPOSITION

WIRKUNGEN BEI KURZZEITEXPOSITION:
Die Substanz reizt die Augen, die Haut und die Atemwege. Möglich sind Auswirkungen auf Blut und Zentralnervensystem, wenn große Mengen verschluckt werden.

WIRKUNGEN NACH WIEDERHOLTER ODER LANGZEITEXPOSITION

Tierversuche zeigen, dass die Substanz möglicherweise fruchtbarkeitsschädigend oder entwicklungsschädigend wirken kann.

LECKAGE

Verschüttetes Material in Behältern sammeln; falls erforderlich durch Anfeuchten Staubentwicklung verhindern. Reste sorgfältig sammeln. An sicheren Ort bringen. Persönliche Schutzausrüstung: Atemschutzgerät, P2-Filter für schädliche Partikel.

R-Sätze Betriebsanweisung:

R22:Gesundheitsschädlich beim Verschlucken.
R36/37/38:Reizt die Augen, die Atmungsorgane und die Haut.

S-Sätze Betriebsanweisung:

S26:Bei Berührung mit den Augen sofort gründlich mit Wasser abspülen und Arzt konsultieren.
S36/37/39:Bei der Arbeit geeignete Schutzkleidung,Schutzhandschuhe und Schutzbrille/Gesichtsschutz tragen.

Aussehen Eigenschaften

C9H8O4; 2-Acetoxy-benzoesäure. Farbloses, kristallines Pulver, fast geruchlos.

Gefahren für Mensch und Umwelt

Gesundheitsschädlich beim Verschlucken.
Zu vermeidende Stoffe sind Oxidationsmittel.
LD50 (oral, Ratte) 1000 mg/kg.
Zeigte bei hohen Dosen im Tierversuch fortpflanzungsstörende Wirkung und kann das Kind im Mutterleib schädigen.
Reizt die Schleimhäute und die oberen Atemwege.

Schutzmaßnahmen und Verhaltensregeln

Schutzhandschuhe als kurzzeitiger Staubschutz.

Verhalten im Gefahrfall

Trocken aufnehmen. Der Entsorgung zuführen. Nachreinigen.
Kohlendioxid, Wasser, Schaum, Pulver.
Brennbar. Im Brandfall Entstehung gefährlicher Dämpfe möglich.

Erste Hilfe

Nach Hautkontakt: Mit reichlich Wasser abwaschen.
Nach Augenkontakt: Mit reichlich Wasser bei geöffnetem Lidspalt mindestens 10 Minuten ausspülen. Augenarzt hinzuziehen.
Nach Einatmen: Frischluft.
Nach Verschlucken: Viel Wasser trinken lassen, Erbrechen auslösen, Arzt hinzuziehen.
Ersthelfer: siehe gesonderten Anschlag

Sachgerechte Entsorgung

Als feste Laborchemikalienabfälle oder gelöst in z. B. Aceton in halogenfreie Lösemittelabfälle.

Beschreibung

Acetylsalicylic acid is a white crystalline powder commonly known by its common name as aspirin or ASA. Aspirin is the most widely used medication in the world.

Chemische Eigenschaften

Acetylsalicylic acid is a white crystalline solid with a slightly bitter taste. It is odorless but hydrolyzes in moist air to give an acetic acid odor

Chemische Eigenschaften

White Solid

Chemische Eigenschaften

Aspirin (USAN), also known as acetyl salicylic acid (abbreviated ASA ) , is a salicylate drug, often used as an analgesic to relieve minor aches and pains, as an antipyretic to reduce fever, and as an anti - inflammatory medication. Aspirin may be effective at preventing certain types of cancer, particularly colorectal cancer.
The main undesirable side effects of aspirin taken by mouth are gastrointestinal ulcers, stomach bleeding, and tinnitus, especially in higher doses. In children and adolescents, aspirin is no longer indicated to control flu - like symptoms or the symptoms of chickenpox or other viral illnesses, because of the risk of Reye's syndrome.
Aspirin is part of a group of medications called non steroidal anti - inflammatory drugs (NSAIDs), but differs from most other NSAIDs in the mechanism of action. Though it, and others in its group called the salicylates, have similar effects (antipyretic, antiinflammatory, analgesic) to the other NSAIDs and inhibit the same enzyme cyclooxygenase, aspirin (but not the other salicylates) does so in an irreversible manner and, unlike others, affects more the COX-1 variant than the COX-2 variant of the enzyme.
Today, aspirin is one of the most widely used medications in the world, with an estimated 40,000 tonnes of it being consumed each year . In countries where Aspirin is a registered trademark owned by Bayer, the generic term is acetylsalicylic acid (ASA).

Physikalische Eigenschaften

Aspirin, an acetyl derivative of salicylic acid, is a white, crystalline, weakly acidic substance, with a melting point of 136 °C , and a boiling point of 140 °C .
Synthesis
The synthesis of aspirin is classified as an esterification reaction. Salicylic acid is treated with acetic anhydride, an acid derivative, causing a chemical reaction that turns salicylic acid's hydroxyl group into an ester group (R-OH → R-OCOCH3). This process yields aspirin and acetic acid, which is considered a byproduct of this reaction.
Polymorphism
Polymorphism, or the ability of a substance to form more than one crystal structure, is important in the development of pharmaceutical ingredients. Many drugs are receiving regulatory approval for only a single crystal form or polymorph. For a long time, only one crystal structure for aspirin was known. That aspirin might have a second crystalline form was suspected since the 1960s. The elusive second polymorph was first discovered by Vishweshwar and coworkers in 2005 , and fine structural details were given by Bond et al. .

Originator

Entab,Mayrand,US,1982

History

The use of salicylic acid goes back thousands of years, and there are numerous accounts of the medicinal properties of plants from the Salix (willow) and Myrtaceae (Myrtle) families. Writings from ancient civilizations indicate the use of willow bark in Mesopotamia and myrtle leaves in Egypt as medicines existing several thousand years b.c.e. Hippocrates (460–377 b.c.e. ) and the ancient Greeks used powdered willow bark and leaves to reduce fever (antipyretic) and as a pain reliever (analgesic). Willow and oil of wintergreen was used as medications by native Americans.
The chemical responsible for the medicinal properties in willow and oil of wintergreen are forms of salicylates, a general name to describe compounds containing the general structure of salicylic acid. Willows (genus Salix) contain salicin and oil of wintergreen contains methyl salicylate. Although the use of willow bark and oil of wintergreen as an accepted antipyretic and analgesic has occurred for at least 2,000 years, by the 19th century medicines were starting to be synthesized in chemical laboratories.

Verwenden

Aspirin’s original use as an analgesic, an antipyretic, and to reduce inflammation continues to this day. More recently there is some evidence that aspirin lessens the chance of heart attacks as a result of its effect as a blood “thinner.”

Verwenden

antifungal

Verwenden

Axepim Cephalosporin antibiotic

Verwenden

Analgesic; antipyretic; anti-inflammatory; antithrombotic

Definition

ChEBI: A member of the class of benzoic acids that is salicylic acid in which the hydrogen that is attached to the phenolic hydroxy group has been replaced by an acetoxy group. A non-steroidal anti-inflammatory drug with moA cyclooxygenase inhibitor activity.

Indications

Aspirin is available as capsules, tablets, enteric-coated tablets (Ecotrin), timed-release tablets (ZORprin), buffered tablets (Ascriptin, Bufferin), and as rectal suppositories. Sodium salicylate is available generically. Other salicylates include choline salicylate (Arthropan), choline magnesium trisalicylate (Trilisate), and magnesium salicylate (Momentum).

Manufacturing Process

As described in US Patent 2,731,492, a glass-lined reactor of 1,500 gallons capacity, fitted with a water-cooled reflux condenser, thermometers with automatic temperature registers and an efficient agitator, is employed.
To start the process, a mother liquor is made by dissolving 1,532 kg of acetic anhydride (15 mols) in 1,200 kg of toluene. To this mother liquor, add 1,382 kg of salicylic acid (10 mols), heat the reaction mixture under an efficient reflux condenser, to 88-92°C and maintain within this temperature range for 20 hours.
The reaction mixture is now transferred to aluminum cooling tanks, and is allowed to cool slowly, over a period of 3 to 4 days, to a terminal temperature of 15-25°C (room temperature). The acetylsalicylic acid precipitates as large, regular crystals. The mother liquor is now filtered or centrifuged from the precipitated acetylsalicylic acid and the filter cake is pressed or centrifuged as free of mother liquor as possible. The crystals are washed with distilled water until completely free of acetic acid, pressed or centrifuged as dry as possible and the filter cake is then dried in a current of warm air at a temperature of 60-70°C.
The filtrate from this first batch will comprise a solution of 180 to 270 kg of unprecipitated acetylsalicylic acid (1.0 to 1.5 mols), 510 kg of acetic anhydride (5.0 mols), 600 kg of acetic acid (10.0 mols) (obtained as a byproduct in the acetylation step) and 1,200 kg of the diluent toluene. Into this filtrate, at a temperature of 15° to 25°C, ketene gas is now passed through a sparger tube or diffuser plate, with good agitation, until a weight increase of 420.5 kg of ketene (10 mols) occurs. The reaction mixture will now contain 180-270 kg of unprecipitated acetylsalicylic acid (1.0-1.5 mols) and 1,532 kg of acetic anhydride (15 mols) in 1,200 kg of toluene. This mother liquor is recycled to the first step of the process for reaction with another batch of 1,382 kg of salicylic acid. On recirculating the mother liquor, the yield of pure acetylsalicylic acid is 1,780 to 1,795 kg per batch.

Trademarks

Aspirin;Compralgyl;Melabon;Rumicine;Salipran;Spalt;Tapal;Zorprin.

Therapeutic Function

Analgesic, Antipyretic, Antiinflammatory

Weltgesundheitsorganisation (WHO)

Acetylsalicylic acid, a nonsteroidal anti-inflammatory, analgesic and antipyretic agent, was introduced into medicine in 1899 and has since been widely available in over-the-counter preparations. Recent studies carried out in the USA have shown an association between acetylsalicylic acid consumption in children and the development of Reye's syndrome (a rare condition characterized by a combination of encephalopathy and liver disorder and usually preceded by an acute viral illness, such as influenza, diarrhoea, or chickenpox). Many drug regulatory authorities have acted to caution against the use of the drug in children and young adults with febrile conditions. Even within this group the risk of exposure is remote and has been estimated to be of the order of 1.5 per million. This warning also concerns products containing other salicylates. The new indication of acetylsalicylic acid - prophylaxis of myocardial infarction due to its antithrombotic effect - requires loneterm use and may lead to serious adverse reactions, including cerebral haemorrhage. Acetylsalicylic acid retains a valuable place in medicine and remains in the WHO Model List of Essential Drugs.

Biologische Funktion

Aspirin is one of the most important NSAIDs because it decreases pain at predominantly peripheral sites with little cortical interaction and thus has few CNS effects. The prototypical COX-2 inhibitors are celecoxib (Celebrex) and its chemical cousin, rofecoxib (Vioxx). In addition to a role in inflammatory processes,COX-2 seems to play a role in colon cancer and Alzheimer’s disease, providing potential additional uses for COX-2-selective drugs.

Acquired resistance

Aspirin is rapidly absorbed in the stomach and quickly degraded by plasma cholinesterases (half-life, 15–20 min). A once-daily dose of 160 mg of aspirin, which is much lower than dosages needed for its anti-inflammatory/analgesic actions, is sufficient to completely inactivate platelet COX-1 irreversibly. Higher doses of aspirin only contribute to its side effects, especially internal bleeding and upper gastrointestinal irritations.

Allgemeine Beschreibung

Aspirin, acetylsalicylic acid (Aspro, Empirin), was introducedinto medicine by Dreser in 1899.Aspirin occurs as white crystals or as a white crystallinepowder and must be kept under dry conditions. It is not advisableto keep aspirin products in the kitchen or bathroomcabinets, because aspirin is slowly decomposed into aceticand salicylic acids in the presence of heat and moisture.Several proprietaries (e.g., Bufferin) use compounds such as sodium bicarbonate, aluminum glycinate, sodium citrate,aluminum hydroxide, or magnesium trisilicate to counteractaspirin’s acidic property. One of the better antacids is dihydroxyaluminumaminoacetate. Aspirin is unusually effectivewhen prescribed with calcium glutamate. The more stable,nonirritant calcium acetylsalicylate is formed, and theglutamate portion (glutamic acid) maintains a pH of 3.5 to5. Practically all salts of aspirin, except those of aluminumand calcium, are unstable for pharmaceutical use. Thesesalts appear to have fewer undesirable side effects and induceanalgesia faster than aspirin. A timed release preparationof aspirin is available. It does not appear to offer anyadvantages over aspirin, except for bedtime dosage.

Allgemeine Beschreibung

Aspirin, acetylsalicylic acid, has an inhibitoryeffect on platelet aggregation not only because of its abilityto inhibit cyclooxygenase (COX) but also because of its ability to acetylate the enzyme. Aspirin irreversibly inhibitsCOX (prostaglandin H synthase), which is the enzyme involvedin converting arachidonate to prostaglandin G2 andultimately thromboxane 2, an inducer of platelet aggregation.Aspirin’s mechanism of action includes not only the inhibitionin the biosynthesis of thromboxane 2, but also itsability to acetylate the serine residue (529) in the polypeptidechain of platelet prostaglandin H synthetase-1. Thisexplains why other nonsteroidal anti-inflammatory agentsthat are capable of inhibiting the COX enzyme do not act asantithrombotics—they are not capable of acetylating thisenzyme. Because platelets cannot synthesize new enzymes,aspirin’s ability to acetylate COX lasts for the life of theplatelet (7–10 days) and is, thus, irreversible.

Allgemeine Beschreibung

Odorless white crystals or crystalline powder with a slightly bitter taste.

Air & Water Reaktionen

Slowly hydrolyzes in moist air. Has been involved in dust cloud explosions. Water insoluble. Solution in water is acid to methyl red indicator.

Reaktivität anzeigen

The active ingredient in common aspirin. Incompatible with oxidizers and strong acids. Also incompatible with strong bases. May react with water or nucleophiles (e.g. amines and hydroxy groups). May also react with acetanilide, amidopyrine, phenazone, hexamine, iron salts, phenobarbitone sodium, quinine salts, potassium and sodium iodides, alkali hydroxides, carbonates, stearates and paracetanol.

Hazard

An allergen; may cause local bleeding espe- cially of the gums; 10-g dose may be fatal. May cause excessive biosynthesis of prostaglandins. Dust dispersed in air is serious explosion risk. Skin and eye irritant.

Brandgefahr

Acetylsalicylic acid is combustible.

Mechanism of action

Discovery of the mechanism
In 1971, British pharmacologist John Robert Vane, then employed by the Royal College of Surgeons in London, showed aspirin suppressed the production of prostaglandins and thromboxanes.
Suppression of prostaglandins and thromboxanes
Aspirin's ability to suppress the production of prostaglandins and thromboxanes is due to its irreversible inactivation of the cyclo oxygenase (PTGS) enzyme required for prostaglandin and thromboxane synthesis. Aspirin acts as an acetylating agent where an acetyl group is covalently attached to a serine residue in the active site of the PTGS enzyme.
COX-1 and COX-2 inhibition
There are at least two different types of cyclooxygenase: COX-1 and COX-2. Aspirin irreversibly inhibits COX-1 and modifies the enzymatic activity of COX-2. COX-2 normally produces prostanoids, most of which are proinflammatory. Aspirin-modified PTGS2 produces lipoxins, most of which are anti-inflammatory.
Additional mechanisms
Aspirin has been shown to have at least three additional modes of action. It uncouples oxidative phosphorylation in cartilaginous (and hepatic) mitochondria, by diffusing from the inner membrane space as a proton carrier back into the mitochondrial matrix, where it ionizes once again to release protons . In short, aspirin buffers and transports the protons. When high doses of aspirin are given, it may actually cause fever, owing to the heat released from the electron transport chain, as opposed to the antipyretic action of aspirin seen with lower doses.
Hypothalamic - pituitary - adrenal activity
Aspirin, like other medications affecting prostaglandin synthesis, has profound effects on the pituitary gland, which indirectly affects a number of other hormones and physiological functions.

Pharmakologie

Salicylic acid is a weak acid, and very little of it is ionized in the stomach after oral administration. Acetylsalicylic acid is poorly soluble in the acidic conditions of the stomach, which can delay absorption of high doses for eight to 24 hours. The increased pH and larger surface area of the small intestine causes aspirin to be absorbed rapidly there, which in turn allows more of the salicylate to dissolve. Owing to the issue of solubility, however, aspirin is absorbed much more slowly during overdose, and plasma concentrations can continue to rise for up to 24 hours after ingestion.

Pharmakologie

Although aspirin itself is pharmacologically active, it is rapidly hydrolyzed to salicylic acid after its absorption, and it is the salicylate anion that accounts for most of the anti-inflammatory activity of the drug. The superior analgesic activity of aspirin compared with sodium salicylate implies that aspirin has an intrinsic activity that is not totally explainable by its conversion to salicylic acid. Aspirin inhibits COX-1 to a much greater extent than COX-2; sodium salicylate is more selective for COX-1. This, combined with the ability of aspirin to acetylate proteins, might account for some of the therapeutic and toxicological differences between aspirin and the other salicylates.
The binding of salicylic acid to plasma proteins varies with its plasma concentrations. At serum salicylic acid concentrations of less than 100 μg/mL, 90 to 95% is protein bound; at 100 to 400 μg/mL, 70 to 85% is protein bound; and at concentrations greater than 400 μg/mL, 20 to 60% is protein bound. The plasma concentration of salicylate that is associated with antiinflammatory activity (200–300 μg/mL) is about six times that needed to produce analgesia. At these higher concentrations, salicylate metabolism is reduced, resulting in a longer half-life for the drug. This reaction is a consequence of the saturable enzyme systems that metabolize salicylates. The plasma half-life for salicylate has been estimated to be 3 to 6 hours at the lower (analgesic) dosage and 15 to 30 hours at the higher (antiinflammatory) dosages.The rate of hydrolysis of aspirin to salicylic acid is not dose limited, and no differences in the absorption of aspirin have been observed between arthritic patients and normal individuals.

Clinical Use

Aspirin is used in the treatment of a number of conditions, including fever, pain, rheumatic fever, and inflammatory diseases, such as rheumatoid arthritis, pericarditis, and Kawasaki disease.
Pain
Asprin 325 MG for pain In most cases, aspirin is considered inferior to ibuprofen for the alleviation of pain, because aspirin is more likely to cause gastrointestinal bleeding . Aspirin is generally ineffective for those pains caused by muscle cramps, bloating, gastric distension, or acute skin irritation.
Headache
Aspirin, either by itself or in combined formulation, effectively treats some types of headache, but its efficacy may be questionable for others.
Aspirin or other overthe- counter analgesics are widely recognized as effective for the treatment of tension headache. Aspirin, especially as a component of an acetaminophen/aspirin/caffeine formulation (e.g., Excedrin Migraine), is considered a first - line therapy in the treatment of migraine, and comparable to lower doses of sumatriptan.
Fever
Like its ability to control pain, aspirin's ability to control fever is due to its action on the prostaglandin system through its irreversible inhibition of COX .
Heart attacks and strokes
For a subset of the population, aspirin may help prevent heart attacks and strokes. In lower doses, aspirin has been known to prevent the progression of existing cardiovascular disease, and reduce the frequency of these events for those with a history of them . ( This is known as secondary prevention.)
Post-surgery
After percutaneous coronary interventions (PCIs), such as the placement of a coronary artery stent, a US Agency for Healthcare Research and Quality guideline recommends that aspirin be taken indefinitely.Frequently, aspirin is combined with an ADP receptor inhibitor, such as clopidogrel, prasugrel or ticagrelor to prevent blood clots. This is called dual anti-platelet therapy (DAPT).

Nebenwirkungen

Contraindications
Aspirin should not be taken by people who are allergic to ibuprofen or naproxen , or who have salicylate intolerance[70][71] or a more generalized drug intolerance to NSAIDs, and caution should be exercised in those with asthma or NSAID - precipitated bronchospasm.
Gastrointestinal
Aspirin use has been shown to increase the risk of gastrointestinal bleeding . Although some enteric-coated formulations of aspirin are advertised as being "gentle to the stomach", in one study, enteric coating did not seem to reduce this risk. Combining aspirin with other NSAIDs has also been shown to further increase this risk.
Central effects
Large doses of salicylate, a metabolite of aspirin, have been proposed to cause tinnitus (ringing in the ears) based on experiments in rats, via the action on arachidonic acid and NMDA receptors cascade.
's syndrome
';s syndrome, a rare but severe illness characterized by acute encephalopathy and fatty liver, can occur when children or adolescents are given aspirin for a fever or other illnesses or infections.

Nebenwirkungen

The most common adverse effects produced by the salicylates are GI disturbances. Occult blood loss from the GI tract, peptic ulceration, and rarely, severe GI hemorrhage can occur. Because salicylic acid is highly bound to plasma proteins, it may be displaced by other highly protein-bound drugs such as oral anticoagulants, sulfonylureas, phenytoin, penicillins, and sulfonamides. The nonacetylated salicylates have greatly reduced effects on blood loss and produce fewer adverse GI effects. In addition, they may be somewhat kidney sparing. Salicylates may provoke hypersensitivity reactions and prolonged bleeding time in some individuals. Tinnitus, hearing impairment, blurred vision, and lightheadedness are indicators of toxic dosages. The use of aspirin in conjunction with any other NSAID is not recommended because of the lack of evidence that such combinations increase efficacy and because of the increased potential for an adverse reaction. Salicylates are contraindicated in children with febrile viral illnesses because of a possible increased risk of Reye’s syndrome.

Sicherheitsprofil

Poison by ingestion, intraperitoneal, and possibly other routes. Human systemic effects by ingestion: acute pulmonary edema, body temperature increase, changes in kidney tubules, coma, constipation, dehydration, hematuria, hepatitis, nausea or vomiting, respiratory stimulation, somnolence, tinnitus, decreased urine volume. Implicated in aplastic anemia. A 10 gram dose to an adult may be fatal. A human teratogen. Human reproductive effects by ingestion and possibly other routes: menstrual cycle changes, parturition, various effects on newborn including Apgar score, developmental abnormalities of the cardlovascular and respiratory systems. Experimental animal reproductive effects. Human mutation data reported. An allergen; skin contact, inhalation, or ingestion can cause asthma, sneezing, irritation of eyes and nose, hves, and eczema. Combustible when exposed to heat or flame. When heated to decomposition it emits acrid smoke and fumes.

Chemical Synthesis

Aspirin, acetylsalicylic acid (3.2.2), is synthesized by the acetylation of salicylic acid (3.2.1) using acetic anhydride or acetyl chloride [60–63].

mögliche Exposition

Used as an over-the counter and proprietary pharmaceutical and veterinary drug. Those engagedin manufacture of aspirin or, more likely, in its consumption in widespread use as an analgesic, antipyretic, and antiinflammatory agent

Environmental Fate

The toxicity of aspirin is multifactorial. Gastrointestinal symptoms such as nausea, vomiting, and abdominal pain occur as a result of both local gastric irritation and stimulation of the medullary chemoreceptor trigger zone. Salicylates directly stimulate the respiratory drive in the brain stem, leading to hyperventilation and respiratory alkalosis. Anion gap metabolic acidosis occurs from a buildup of organic acids as well as the uncoupling of oxidative phosphorylation, which results in an imbalance in ATP consumption and production, resulting in a net buildup of hydrogen ions. Therefore, aspirin often causes a mixed acid–base status. Furthermore, the uncoupling of oxidative phosphorylation results in failure to produce ATP despite increased oxygen utilization, which leads to heat production and hyperthermia. Aspirin interferes with glucose metabolism and gluconeogenesis, and can cause profound decreases in cerebrospinal fluid glucose concentrations despite normal blood glucose concentrations.

Versand/Shipping

UN2811 Toxic solids, organic, n.o.s., Hazard Class: 6.1; Labels: 6.1-Poisonous materials, Technical Name Required

läuterung methode

Crystallise aspirin twice from toluene, wash it with cyclohexane and dry it at 60o under vacuum for several hours [Davis & Hetzer J Res Nat Bur Stand 60 569 1958]. It has been recrystallised from isopropanol and from diethyl ether/pet ether (b 40-60o). It crystallises from EtOH (m 143-144o), *C6H6 (m 143o), hexane (m 115o and 128o), octane (m 121o), and has m 110o after sublimation. It has pK2 6 3.69(H2O), 4.15(20% aqueous EtOH), 4.47(30% aqueous EtOH) and 4.94(40% aqueous EtOH). It is an analgesic. [Beilstein 10 H 67, 10 II 41, 10 III 102, 10 IV 138.]

Toxicity evaluation

As in humans, the environmental fate of acetylsalicylic acid is pH dependent. Above pH 5.5, acetylsalicylic acid will be the predominant form seen. Anions generally do not volatilize or undergo adsorption to the extent of their neutral counterparts. Although information is limited, aspirin is considered readily biodegradable and is ultimately mineralized to carbon dioxide and water.

Inkompatibilitäten

Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides, carbonates, moisture. Dust dispersed in air is explosive

Waste disposal

May be flushed to sewer with large volumes of water.

2-(Acetyloxy)benzoesäure Upstream-Materialien And Downstream Produkte

Upstream-Materialien

Downstream Produkte


2-(Acetyloxy)benzoesäure Anbieter Lieferant Produzent Hersteller Vertrieb Händler.

Global( 573)Lieferanten
Firmenname Telefon Fax E-Mail Land Produktkatalog Edge Rate
Target Molecule Corp
18019718960 781-999-5354
marketing@targetmol.com United States 19232 58
Capot Chemical Co.,Ltd.
+86(0)13336195806 +86-571-85586718
+86-571-85864795 sales@capotchem.com China 20012 60
Shanghai Bojing Chemical Co.,Ltd.
+86-21-37122233
+86-21-37127788 Candy@bj-chem.com CHINA 497 55
Henan Tianfu Chemical Co.,Ltd.
0371-55170693
0371-55170693 info@tianfuchem.com CHINA 22607 55
Hangzhou FandaChem Co.,Ltd.
008615858145714
+86-571-56059825 fandachem@gmail.com CHINA 8909 55
Nanjing Finetech Chemical Co., Ltd.
025-85710122 17714198479
025-85710122 sales@fine-chemtech.com CHINA 890 55
Hefei TNJ Chemical Industry Co.,Ltd.
+86-0551-65418679
86-0551-65418697 info@tnjchem.com China 3000 55
Shanghai Zheyan Biotech Co., Ltd.
18017610038
zheyansh@163.com CHINA 3623 58
career henan chemical co
+86-371-86658258
sales@coreychem.com CHINA 29954 58
SHANDONG ZHI SHANG CHEMICAL CO.LTD
+86 18953170293
+86 0531-67809011 sales@sdzschem.com CHINA 2941 58

50-78-2(2-(Acetyloxy)benzoesäure)Verwandte Suche:


  • O-ACETYLSALICYLIC ACID
  • O-ACETOXYBENZOIC ACID
  • 2-Acetoxybenzoesre,Aspirin
  • 2-Acetoxybenzoic acid~Aspirin
  • aspirin usp
  • o-Acetylsalicylic acid 2-Acetoxybenzoic acid
  • ASPIRIN (AECTAMINOPHIN)
  • ACETYLSALICYLIC ACID BP2000
  • ACETICYL
  • ACETOXYBENZOIC ACID
  • ACETYLSALICYLIC ACID
  • ACETYSALICYLIC ACID
  • ACETYLSALICYLIC ACID IMPURITY D
  • ALKENYL SUCCINIC ANHYDRIDES
  • AKOS BBS-00003798
  • 2-ACETOXYBENZOIC ACID
  • 2-(ACETYLOXY)-BENZOIC ACID
  • ASPIRIN
  • ASA
  • Acetonyl
  • Acetophen
  • Acetosal
  • Acetosalic acid
  • acetosalicacid
  • Acetosalin
  • Acetylin
  • Acetylsal
  • acetylsalicyclic
  • -Acetylsalicyclic acid
  • acetylsalicyclicacid
  • acetylsalicylate
  • acetylsalicylic
  • acetylsalicylicacid(aspirin,asa)
  • Aspirine
  • Aspirinl
  • Aspro
  • asproclear
  • Asteric
  • Bayer
  • Benaspir
  • benzoicacid,2-acetoxy-
  • Bialpirina
  • Bialpirinia
  • Bi-prin
  • Bufferin
  • Cemirit
  • Claradin
  • Clariprin
  • Colfarit
  • component of Ascodeen-30
  • component of Coricidin
  • component of Darvon with A.S.A
  • component of Midol
  • component of Persistin
  • component of St. Joseph Cold Tablets
  • component of Synirin
  • component of Zactirin
  • Contrheuma retard
Copyright 2019 © ChemicalBook. All rights reserved