Chinese Japanese Germany


Introduction History Chemical properties Production Uses Safety and hazards References
Chemical Name:
Molecular Formula:
Formula Weight:
MOL File:

Etanol Properties

Melting point:
Boiling point:
0.789 g/mL at 20 °C
vapor density 
1.59 (vs air)
vapor pressure 
43 mmHg at 20 °C
refractive index 
Flash point:
storage temp. 
Store at RT.
water: soluble (completely)
16(at 25℃)
Liquid. Colorless liquid / invisible vapor.
APHA: ≤10
Relative polarity
7.0 (10g/l, H2O, 20℃)
Pleasant alcoholic odor detectable at 49 to 716 ppm (mean = 180 ppm)
explosive limit
Water Solubility 
λ: 240 nm Amax: 0.40
λ: 250 nm Amax: 0.30
λ: 260 nm Amax: 0.30
λ: 270 nm Amax: 0.10
λ: 340 nm Amax: 0.10
Stable. Substances to be avoided include strong oxidizing agents, peroxides, acids, acid chlorides, acid anhydrides, alkali metals, ammonia, moisture. Forms explosive mixtures with air. Hygroscopic.
CAS DataBase Reference
64-17-5(CAS DataBase Reference)
NIST Chemistry Reference
EPA Substance Registry System
  • Risk and Safety Statements
  • Hazard and Precautionary Statements (GHS)
Hazard Codes  F,T,Xn,N
Risk Statements  11-10-36/37/38-39/23/24/25-23/24/25-68/20/21/22-20/21/22-52/53-51/53
Safety Statements  16-7-36-26-45-36/37-61-24/25-2017/7/16
RIDADR  1170
WGK Germany  nwg
RTECS  KQ6300000
Autoignition Temperature 363 °C
HazardClass  3
PackingGroup  II
HS Code  22071000
Hazardous Substances Data 64-17-5(Hazardous Substances Data)
Toxicity LD50 in young, old rats (g/kg): 10.6, 7.06 orally (Wiberg)
Signal word: Danger
Hazard statements:
Code Hazard statements Hazard class Category Signal word Pictogram P-Codes
H225 Highly Flammable liquid and vapour Flammable liquids Category 2 Danger P210,P233, P240, P241, P242, P243,P280, P303+ P361+P353, P370+P378,P403+P235, P501
H226 Flammable liquid and vapour Flammable liquids Category 3 Warning
H302 Harmful if swallowed Acute toxicity,oral Category 4 Warning P264, P270, P301+P312, P330, P501
H313 May be harmful in contact with skin Acute toxicity,dermal Category 5 P312
H319 Causes serious eye irritation Serious eye damage/eye irritation Category 2A Warning P264, P280, P305+P351+P338,P337+P313P
H333 May be harmful if inhaled Acute toxicity,inhalation Category 5 P304+P312
H370 Causes damage to organs Specific target organ toxicity, single exposure Category 1 Danger P260, P264, P270, P307+P311, P321,P405, P501
H371 May cause damage to organs Specific target organ toxicity, single exposure Category 2 Warning P260, P264, P270, P309+P311, P405,P501
H402 Harmful to aquatic life Hazardous to the aquatic environment, acute hazard Category 3
H412 Harmful to aquatic life with long lasting effects Hazardous to the aquatic environment, long-term hazard Category 3 P273, P501
Precautionary statements:
P210 Keep away from heat/sparks/open flames/hot surfaces. — No smoking.
P260 Do not breathe dust/fume/gas/mist/vapours/spray.
P280 Wear protective gloves/protective clothing/eye protection/face protection.
P311 Call a POISON CENTER or doctor/physician.
P301+P310 IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.
P303+P361+P353 IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower.
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuerinsing.
P337+P313 IF eye irritation persists: Get medical advice/attention.
P370+P378 In case of fire: Use … for extinction.
P405 Store locked up.
P403+P235 Store in a well-ventilated place. Keep cool.

Etanol price More Price(160)

Manufacturer Product number Product description CAS number Packaging Price Updated Buy
Sigma-Aldrich 1012688 Alcohol Determination-Alcohol United States Pharmacopeia (USP) Reference Standard 64-17-5 5x5ml $389.55 2018-11-20 Buy
Sigma-Aldrich 1012768 Ethanol solution United States Pharmacopeia (USP) Reference Standard 64-17-5 5x1.2ml $348 2018-11-13 Buy
Alfa Aesar 022931 Ethanol, anhydrous, denatured, Spectrophotometric Grade, 90%, 5% methanol, 5% isopropanol 64-17-5 *4x4L $292 2018-11-16 Buy
Alfa Aesar 022930 Ethanol, anhydrous, denatured, HPLC Grade, 90%, 5% methanol, 5% isopropanol 64-17-5 1L $40.2 2018-11-16 Buy
Sigma-Aldrich 277649 Reagent Alcohol anhydrous, ≤0.003% water 64-17-5 100ml $41.2 2018-11-13 Buy

Etanol Chemical Properties,Uses,Production


Ethanol, also known as ethyl alcohol (or grain spirits, or alcohol), is a clear colorless, volatile, flammable solvent with a characteristic odor. The boiling point of ethanal is 78.5°C. The bio-alcohol is found in alcoholic beverages. Concentrated alcohol has a strong burning taste, but it is somewhat sweet when diluted. It is also increasingly being used as a fuel (usually replacing or complementing gasoline). Its low melting point of -114.5° C allows it to be used in antifreeze products.


Ethanol has been known to humans since prehistory as the active ingredient of alcoholic beverages. Its isolation as a relatively pure compound was probably achieved first by Islamic alchemists who developed the art of distillation[1].

Chemical properties

Ethanol is highly soluble in water and organic solvents, but poorly soluble in fats and oils. Ethanol itself is a good solvent, which is used in cosmetics, paints and tinctures[2]. Density of ethanol at 68 °F (20 °C) is 789 g/l. Pure ethanol is neutral (pH ~7). Most alcoholic beverages are more or less acidic.
Ethanol/ethyl alcohol is highly flammable liquid, hygroscopic, and fully miscible in water. Ethanol is incompatible with a large number of chemicals such as strong oxidising agents, acids, alkali metals, ammonia, hydrazine, peroxides, sodium, acid anhydrides, calcium hypochlorite, chromyl chloride, nitrosyl perchlorate, bromine pentafluoride, perchloric acid, silver nitrate, mercuric nitrate, potassium tert-butoxide, magnesium perchlorate, acid chlorides, platinum, uranium hexafluoride, silver oxide, iodine heptafluoride, acetyl bromide, disulphuryl difluoride, acetyl chloride, permanganic acid, ruthenium (VIII) oxide, uranyl perchlorate, and potassium dioxide.


Ethanol is produced by fermenting and distilling grains. Actually, ethanol can be made from any plant that contains a large amount of sugar or components that can be converted into sugar, such as starch or cellulose. As their names imply, sugar beets and sugar cane contain natural sugar. Crops such as corn, wheat and barley contain starch that can be easily converted to sugar[3]. Today, ethanol is made primarily from corn.
Another form of ethanol, called bioethanol, can be made from lignocellulosics which are from many types of trees and grasses, although the process is more difficult[4]. Lignocellulose consists of three main components: cellulose, hemicellulose and lignin, the first two being composed of chains of sugar molecules. Those chains can be hydrolyzed to produce monomeric sugars, some of which can be fermented using yeasts to produce ethanol. Ethanol can be produced from lignocellulosic materials in various ways, but all processes comprise the same main components: hydrolysis of the hemicellulose and the cellulose to monomer sugars, fermentation and product recovery and concentration by distillation[5].
Currently, ethanol production processes using crops are well-established. However, utilization of a cheaper substrate, such as lignocellulose, could make bioethanol more competitive with fossil fuel. Therefore, bacterial and yeast strains have been constructed which are advantageous for ethanol production[6]. The cost of ethanol production from lignocellulosic materials is relatively high based on current technologies, and the main challenges are the low yield and high cost of the hydrolysis process. Considerable research efforts have been made to improve the hydrolysis of lignocellulosic materials[7]. Besides, new enzymes have revolutionized the liquefaction process in starch ethanol and improved ethanol yield and product quality[8].


A solution of 70-85% of ethanol is commonly used as a disinfectant and it kills organisms by denaturing their proteins and dissolving their lipids. It is effective against most bacteria and fungi, and many viruses, but is ineffective against bacterial spores. This disinfectant property of ethanol is the reason that alcoholic beverages can be stored for a long time[9]. Ethanol also has many medical uses, and can be found in products such as medicines, medical wipes and as an antiseptic in most antibacterial hand sanitizer gels. Ethanal can also be used as antidote. It competitively blocks the formation of toxic metabolites in toxic alcohol ingestions by having a higher affinity for the enzyme Alcohol Dehydrogenase (ADH). Its chief application is in methanol and ethylene glycol ingestions. Ethanol can be administered by the oral, nasogastric or intravenous route to maintain a blood ethanol concentration of 100-150 mg/dl (22-33 mol/L)[10].
Ethanol is flammable and burns more cleanly than many other fuels. Ethanol has been used in cars since Henry Ford designed his 1908 Model T to operate on alcohol. In Brazil and the United States, the use of ethanol from sugar cane and grain as car fuel has been promoted by government programs[11]. The Brazilian ethanol program started as a way to reduce the reliance on oil imports, but it was soon realized that it had important environmental and social benefits[12]. The fully combusted products of ethanol are only carbon dioxide and water. For this reason, it is environmental friendly and has been used to fuel public buses in the US. However, pure ethanol attacks certain rubber and plastic materials and cannot be used in unmodified car engines[13].
The alcohol-based alternative fuel that is blended with gasoline to produce a fuel with a higher octane rating and fewer harmful emissions than unblended gasoline. A mixture containing gasoline with at least 10% ethanol is known as gasohol. Specifically, gasoline with 10% ethanol content is known as E10. Another common gasohol variant is E15, which contains 15% ethanol and 85% gasoline. E15 is only appropriate for use in Flex Fuel vehicles or a very small percentage of the newest vehicles[14]. In addition, E85 is a term used for a mixture of 15% gasoline and 85% ethanol. E85 keeps the fuel system clean because it burns cleaner than regular gas or diesel and doesn't leave behind gummy deposits. Beginning with the model year 1999, a number of vehicles in the U.S. were manufactured so as to be able to run on E85 fuel without modification. These vehicles are often labeled dual fuel or flexible fuel vehicles, since they can automatically detect the type of fuel and change the engine's behavior to compensate for the different ways that they burn in the engine cylinders[15]
The use of ethanol-diesel fuel blends is growing around the world, and are designed to provide renewable, cleaner burning fuel alternatives for off-road equipment, buses, semi-trucks and other vehicles that run on diesel fuel. With the addition of ethanol and other fuel additives to diesel, the characteristic black diesel smoke is eliminated and there are significant reductions in particulate matter, carbon monoxide, and nitrogen oxide emissions. It is also possible to use ethanol for cooking as a replacement for wood, charcoal, propane, or as a substitute for lighting fuels, such as kerosene[16].
Brazil and the United States lead the industrial production of ethanol fuel, accounting together for 89% of the world's production in 2008. In comparison with the USA and Brazil, Europe ethanol for fuel production is still very modest. Brazil is the world's second largest producer of ethanol fuel and the world's largest exporter[17].
Significant volumes of ethanol are produced for the beverage and industrial markets from agricultural feedstock. Ethanol produced for these industries differs from ethanol for fuel only in its strength, which can vary between 96% and 99.9% and in its purity, depending on the end use. Beverage and drinks industry may be the best-known end-user of ethanol. It is used to make many kinds of spirits, such vodka, gin and anisette. High standards and processes are required for ethanal used in the production of spirit drinks.
The ethanol used as an intermediary product by the chemical, pharmaceutical or cosmetics industry is in many cases of the highest and purest possible quality. These are premium markets due to the additional steps in the alcohol production process that are necessary to achieve the required purity. Same high standards and purity requirements apply in food industry, such as flavors and aromas extraction and concentrations, as well as paints and thermometers. Ethanol can be used in de-icer or anti-freeze to clear the car windscreen. It also is contained in perfumes, deodorants, and other cosmetics[18].

Safety and hazards

Even though ethanol is very commonly used, it is a dangerous chemical. As ethanal is highly flammable, it has exact flash points which needs to be noticed. While ethanol is consumed when drinking alcoholic beverages, consuming ethanol alone can cause coma and death. Ethanol may also be a carcinogenic[19].
Exposure to ethanol can be in vapor form (breathing it in), skin/body contact or ingestion. All are serious and need to be managed appropriately to ensure more damage is not incurred while trying to attend to the exposure.
Common side effects of ethanol include: intoxication, low blood pressure (hypotension) with flushing, agitation, low blood sugar (hypoglycemia), nausea, vomiting and excessive urination[20].


[5] M. Galbe, G. Zacchi, A review of the production of ethanol from softwood, Applied microbiology and biotechnology, 59(2002) 618-28.
[6] J. Zaldivar, J. Nielsen, L. Olsson, Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration, Applied microbiology and biotechnology, 56(2001) 17-34.
[7] Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresource technology, 83(2002) 1-11.
[8] P.V. Harris, F. Xu, N.E. Kreel, C. Kang, S. Fukuyama, New enzyme insights drive advances in commercial ethanol production, Current opinion in chemical biology, 19(2014) 162-70.
[12] J. Goldemberg, Ethanol for a sustainable energy future, science, 315(2007) 808-10.
[17] C. Ibeto, A. Ofoefule, K. Agbo, A global overview of biomass potentials for bioethanol production: a renewable alternative fuel, Trends Appl Sci Res, 6(2011) 410e25.

Chemical Properties

Ethyl alcohol is a colorless, volatile, flammable liquid with a sweet, fruity odor. The Odor Threshold is 0.1355 ppm.

Chemical Properties

Colourless, clear, volatile, flammable liquid, hygroscopic

Chemical Properties

Ethyl alcohol is a colorless flammable liquid with a typical lower alcohol odor and is miscible in water in all proportions. It is stable and hygroscopic. It is incompatible with strong oxidizing agents, peroxides, acids, acid chlorides, acid anhydrides, alkali metals, ammonia, and moisture. Ethyl alcohol forms explosive mixtures with air. Ethyl alcohol is the most common solvent used in aerosols, cosmetics, pharmaceuticals, alcoholic beverages, vinegar production, and in the chemical synthesis of a large variety of products in different industries. For instance, in the manufacture of plastics, lacquers, polishes, plasticizers, perfumes, adhesives, rubber accelerators, explosives, synthetic resins, nitrocellulose, inks, preservatives, and as a fuel.


alcohol (alcohol SD-40; alcohol SDA-40; ethanol; ethyl alcohol) is widely used in the cosmetic industry as an antiseptic as well as a solvent given its strong grease-dissolving abilities. It is often used in a variety of concentrations in skin toners for acne skin, aftershave lotions, perfumes, suntan lotions, and toilet waters. Alcohol dries the skin when used in high concentrations. It is manufactured through the fermentation of starch, sugar, and other carbohydrates.


ethyl alcohol (Etanol) is commonly known as rubbing alcohol. ethyl alcohol is ordinary alcohol and is used medicinally as a topical antiseptic, astringent, and anti-bacterial. At concentrations above 15 percent, it is also a broad-spectrum preservative against bacteria and fungi, and can boost the efficacy of other preservatives in a formulation. Cosmetic companies tend to use alcohol SD-40 in high-grade cosmetic manufacturing as they consider ethanol too strong and too drying for application on the skin. obtained from grain distillation, it can also be synthetically manufactured.


Suitable for use in the precipitation of nucleic acids.


ChEBI: A primary alcohol that is ethane in which one of the hydrogens is substituted by a hydroxy group.


Most ethyl alcohol is used in alcoholic beverages in suitable dilutions. Other uses are as solvent in laboratory and industry, in the manufacture of denatured alcohol, pharmaceuticals (rubbing Compounds, lotions, tonics, colognes), in perfumery, in organic synthesis. Octane booster in gasoline. Pharmaceutic aid (solvent).


Classified as a depressant drug. Though it is rapidly oxidized in the body and is therefore noncumulative, ingestion of even moderate amounts causes lowering of inhibitions, often succeeded by dizziness, headache, or nausea. Larger intake causes loss of m

Health Hazard

VAPOR: Irritating to eyes, nose and throat. LIQUID: Not harmful.

Health Hazard

Exposures to ethyl alcohol by ingestion cause dizziness, faintness, drowsiness, decreased awareness and responsiveness, euphoria, abdominal discomfort, nausea, vomiting, staggering gait, lack of coordination, and coma. Ethyl alcohol causes no adverse effects with normal skin, but is potentially harmful when absorbed across markedly abraded skin. Repeated inhalation of ethyl alcohol vapors in high concentrations may cause a burning sensation in the throat and nose, stinging and watering in the eyes with symptoms of irritation, dizziness, faintness, drowsiness, nausea, and vomiting. Direct exposures of the eyes to ethyl alcohol may cause mild to moderate conjunctivitis, seen mainly as redness of the conjunctiva. Prolonged and repeated oral exposures to ethyl alcohol result in the development of progressive liver injury with fi brosis. Chronic exposures or repeated ingestion of ethyl alcohol by pregnant women are known to adversely affect the CNS of the fetus, producing a collection of effects that together constitute fetal alcohol syndrome. The adverse health effects observed in the fetus include mental and physical retardation, disturbances of learning, motor, and language defi ciencies, small size head, and behavioral disorders. The target organs that are damaged by prolonged exposures to ethyl alcohol include the eyes, skin, respiratory system, CNS, liver, blood, and reproductive system.

Health Hazard

The acute toxicity of ethanol is very low. Ingestion of ethanol can cause temporary nervous system depression with anesthetic effects such as dizziness, headache, confusion, and loss of consciousness; large doses (250 to 500 mL) can be fatal in humans. High concentrations of ethanol vapor are irritating to the eyes and upper respiratory tract. Liquid ethanol does not significantly irritate the skin but is a moderate eye irritant. Exposure to high concentrations of ethanol by inhalation (over 1000 ppm) can cause central nervous system (CNS) effects, including dizziness, headache, and giddiness followed by depression, drowsiness, and fatigue. Ethanol is regarded as a substance with good warning properties. Tests in some animals indicate that ethanol may have developmental and reproductive toxicity if ingested. There is no evidence that laboratory exposure to ethanol has carcinogenic effects. To discourage deliberate ingestion, ethanol for laboratory use is often "denatured" by the addition of other chemicals; the toxicity of possible additives must also be considered when evaluating the risk of laboratory exposure to ethanol

Fire Hazard

Ethanol is a flammable liquid (NFPA rating = 3), and its vapor can travel a considerable distance to an ignition source and "flash back." Ethanol vapor forms explosive mixtures with air at concentrations of 4.3 to 19% (by volume). Hazardous gases produced in ethanol fires include carbon monoxide and carbon dioxide. Carbon dioxide or dry chemical extinguishers should be used for ethanol fires.

Fire Hazard

FLAMMABLE. Flashback along vapor trail may occur. Vapor may explode if ignited in an enclosed area.

Contact allergens

Ethanol is widely used for its solvent and antiseptic properties. It is rather an irritant and sensitization has rarely been reported.

Safety Profile

Confirmed human carcinogen for ingestion of beverage alcohol. Experimental tumorigenic and teratogenic data. Moderately toxic to humans by ingestion. Moderately toxic experimentally by intravenous and intraperitoneal routes. Mildly toxic by inhalation and skin contact. Human systemic effects by ingestion and subcutaneous routes: sleep disorders, hallucinations, dtstorted perceptions, convulsions, motor activity changes, ataxia, coma, antipsychotic,headache, pulmonary changes, alteration in gastric secretion, nausea or vomiting, other gastrointestinal changes, menstrual cycle changes, and body temperature decrease. Can also cause glandular effects in humans. Human reproductive effects by ingestion, intravenous, and intrauterine routes: changes in female fertility index. Effects on newborn include: changes in Apgar score, neonatal measures or effects, and drug dependence. Experimental reproductive effects. Human mutation data reported. An eye and skin irritant. The systemic effect of ethanol differs from that of methanol. Ethanol is rapidly oxidtzed in the body to carbon dtoxide and water, and, in contrast to methanol, no cumulative effect occurs. Though ethanol possesses narcotic properties, concentrations sufficient to produce this effect are not reached in industry. Concentrations below 1000 pprn usually produce no signs of intoxication. Exposure to concentrations over 1000 pprn may cause headache, irritation of the eyes, nose, and throat, and, if continued for an hour, drowsiness and lassitude, loss of appetite, and inability to concentrate. There is no concrete evidence that repeated exposure to ethanol vapor results in cirrhosis of the liver. Ingestion of large doses can cause alcohol poisoning. Repeated ingestions can lead to alcoholism. It is a central nervous system depressant.Flammable liquid when exposed to heat or flame; can react vigorously with oxidizers. To fight fire, use alcohol foam, CO2, dry chemical. Explosive reaction with the oxidized coating around potassium metal. Ignites and then explodes on contact with acetic anhydride + sodum hydrogen sulfate. Reacts violently with acetyl bromide (evolves hydrogen bromide), dichloromethane + sulfuric acid + nitrate or nitrite, disulfuryl difluoride, tetrachlorosilane + water, and strong oxidants. Ignites on contact with disulfuric acid + nitric acid, phosphorus(IⅡ) oxide, platinum, potassium tert-butoxide + acids. Forms explosive products in reaction with ammonia + silver nitrate (forms silver nitride and silver fulminate), magnesium perchlorate (forms ethyl perchlorate), nitric acid + silver (forms silver fulminate), silver nitrate (forms ethyl nitrate), silverp) oxide + ammonia or hydrazine (forms silver nitride and silver fulminate), sodum (evolves hydrogen gas). Incompatible with acetyl chloride, BrF5, Ca(OCl)2, ClO3, Cr03, Cr(OCl)2, (cyanuric acid + H20), H202, HNO3, (H202 + H2SO4), (I + CH3OH + HgO), wn(ClO4)2 + 2,2-dimethoxy propane], Hg(NO3)2, HClO4, perchlorates, (H2SO4 + permanganates), HMn04, KO2, KOC(CH3)3, AgClO4, NaH3N2, uo2(clO4)2

Potential Exposure

Ethyl alcohol is used, topical antiinfective agent; solvent to make beverages; in the chemical synthesis of a wide variety of compounds, such as acetaldehyde, ethyl ether, ethyl chloride, and butadiene. It is a solvent or processing agent in the manufacture of pharmaceuticals; plastics, lacquers, polishes, plasticizers, perfumes, cosmetics, rubber accelerators; explosives, synthetic resins; nitrocellulose, adhesives, inks, and preservatives. It is also used as an antifreeze and as a fuel. It is an intermediate in the manufacture of many drugs and pesticides.

First aid

If this chemical gets into the eyes, remove any contact lenses at once and irrigate immediately for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts the skin, remove contaminated clothing and wash immediately with soap and water. Seek medical attention immediately. If this chemical has been inhaled, remove from exposure, begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. When this chemical has been swallowed, get medical attention. Give large quantities of water and induce vomiting. Do not make an unconscious person vomit


Ethyl alcohol should be protected from physical damage. It should be kept stored in a cool, dry, well-ventilated location, away from any area where the fi re hazard may be acute. Outside or detached storage is preferred. Separate from incompatibles. Containers should be bonded and grounded for transfer to avoid static sparks. The storage and use areas should be free from smoking areas.


UN1170 Ethyl alcohol or Ethanol or Ethanol solutions or Ethyl alcohol solutions, Hazard Class: 3; Labels: 3-Flammable liquid.

Purification Methods

Usual impurities of fermentation alcohol are fusel oils (mainly higher alcohols, especially pentanols), aldehydes, esters, ketones and water. With synthetic alcohol, likely impurities are water, aldehydes, aliphatic esters, acetone and diethyl ether. Traces of *benzene are present in ethanol that has been dehydrated by azeotropic distillation with *benzene. Anhydrous ethanol is very hygroscopic. Water (down to 0.05%) can be detected by formation of a voluminous precipitate when aluminium ethoxide in *benzene is added to a test portion, Rectified spirit (95% ethanol) is converted to absolute (99.5%) ethanol by refluxing with freshly ignited CaO (250g/L) for 6hours, standing overnight and distilling with precautions to exclude moisture. Numerous methods are available for further drying of absolute ethanol for making “Super dry ethanol”. Lund and Bjerrum [Chem Ber 64 210 1931] used reaction with magnesium ethoxide, prepared by placing 5g of clean dry magnesium turnings and 0.5g of iodine (or a few drops of CCl4), to activate the Mg, in a 2L flask, followed by 50-75 mL of absolute ethanol, and warming the mixture until a vigorous reaction occurs. When this subsides, heating is continued until all the magnesium is converted to magnesium ethoxide. Up to 1L of ethanol is then added and, after an hour's reflux, it is distilled off. The water content should be below 0.05%. Walden, Ulich and Laun [Z Phys Chem 114 275 1925] used amalgamated aluminium chips, prepared by degreasing aluminium chips (by washing with Et2O and drying in a vacuum to remove grease from machining the Al), treating with alkali until hydrogen evolved vigorously, washing with H2O until the washings were weakly alkaline and then stirring with 1% HgCl2 solution. After 2minutes, the chips were washed quickly with H2O, then alcohol, then ether, and dried with filter paper. (The amalgam became warm.) These chips were added to the ethanol, which was then gently warmed for several hours until evolution of hydrogen ceased. The alcohol was distilled and aspirated for some time with pure dry air. Smith [J Chem Soc 1288 1927] reacted 1L of absolute ethanol in a 2L flask with 7g of clean dry sodium, and added 25g of pure ethyl succinate (27g of pure ethyl phthalate was an alternative), and refluxed the mixture for 2hours in a system protected from moisture, and then distilled the ethanol. A modification used 40g of ethyl formate instead, so that sodium formate separated out and, during reflux, the excess of ethyl formate decomposed to CO and ethanol. Drying agents suitable for use with ethanol include Linde type 4A molecular sieves, calcium metal, and CaH2. The calcium hydride (2g) is crushed to a powder and dissolved in 100mL absolute ethanol by gently boiling. About 70mL of the ethanol are distilled off to remove any dissolved gases before the remainder is poured into 1L of ca 99.9% ethanol in a still, where it is boiled under reflux for 20hours, while a slow stream of pure, dry hydrogen (better use nitrogen or Ar) is passed through. It is then distilled [Rüber Z Elektrochem 29 334 1923]. If calcium is used for drying, about ten times the theoretical amount should be used, and traces of ammonia (from some calcium nitride in the Ca metal) would be removed by passing dry air into the vapour during reflux. Ethanol can be freed from traces of basic materials by distillation from a little 2,4,6-trinitrobenzoic acid or sulfanilic acid. *Benzene can be removed by fractional distillation after adding a little water (the *benzene/water/ethanol azeotrope distils at 64.9o), the alcohol is then re-dried using one of the methods described above. Alternatively, careful fractional distillation can separate *benzene as the *benzene/ethanol azeotrope (b 68.2o). Aldehydes can be removed from ethanol by digesting with 8-10g of dissolved KOH and 5-10g of aluminium or zinc per L, followed by distillation. Another method is to heat under reflux with KOH (20g/L) and AgNO3 (10g/L) or to add 2.5-3g of lead acetate in 5mL of water to 1L of ethanol, followed (slowly and without stirring) by 5g of KOH in 25mL of ethanol: after 1hour the flask is shaken thoroughly, then set aside overnight before filtering and distilling. The residual water can be removed by standing the distillate over activated aluminium amalgam for 1 week, then filtering and distilling. Distillation of ethanol from Raney nickel eliminates catalyst poisons. Other purification procedures include pre-treatment with conc H2SO4 (3mL/L) to eliminate amines, and with KMnO4 to oxidise aldehydes, followed by refluxing with KOH to resinify aldehydes, and distilling to remove traces of H3PO4 and other acidic impurities after passage through silica gel, and drying over CaSO4. Water can be removed by azeotropic distillation with dichloromethane (azeotrope boils at 38.1o and contains 1.8% water) or 2,2,4-trimethylpentane. [Beilstein 1 IV 1289.] Rapid purification: Place degreased Mg turnings (grease from machining the turnings is removed by washing with dry EtOH then Et2O, and drying in a vacuum) (5g) in a dry 2L round bottomed flask fitted with a reflux condenser (protect from air with a drying tube filled with CaCl2 or KOH pellets) and flush with dry N2. Then add iodine crystals (0.5g) and gently warm the flask until iodine vapour is formed and coats the turnings. Cool, then add EtOH (50mL) and carefully heat to reflux until the iodine disappears. Cool again then add more EtOH (to 1L) and reflux under N2 for several hours. Distil and store over 3A molecular sieves (pre-heated at


May form explosive mixture with air. May accumulate static electrical charges, and may cause ignition of its vapors. Reactions may be violent with oleum, sulfuric acid; nitric acid, bases, aliphatic amines;isocyanates, strong oxidizers. Also incompatible with potassium dioxide, bromine pentafluoride; acetyl bromide; acetyl chloride; platinum, sodium.

Flammability and Explosibility

Ethanol is a flammable liquid (NFPA rating = 3), and its vapor can travel a considerable distance to an ignition source and "flash back." Ethanol vapor forms explosive mixtures with air at concentrations of 4.3 to 19% (by volume). Hazardous gases produced in ethanol fires include carbon monoxide and carbon dioxide. Carbon dioxide or dry chemical extinguishers should be used for ethanol fires.

Waste Disposal

Dissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber. All federal, state, and local environmental regulations must be observed. Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal.


During handling of ethyl alcohol, workers should use chemical-resistant shields, monogoggles, proper gloves, laboratory coat/apron, and protective equipment as required. Workers and the workplace should have adequate ventilation vent hoods, class b extinguisher. Workers should avoid sources of heat, sparks, or flames. Waste disposal and spill should be collected in suitable containers or absorbed on a suitable absorbent material for subsequent disposal. Waste material should be disposed of in an approved incinerator or in a designated landfi ll site, in compliance with all federal, provincial, and local government regulations.

Etanol Preparation Products And Raw materials

Raw materials

Preparation Products

Etanol Suppliers

Global( 367)Suppliers
Supplier Tel Fax Email Country ProdList Advantage
Shenzhen Sendi Biotechnology Co.Ltd.
0755-23311925 18102838259
0755-23311925 CHINA 3218 55
Shanghai Bojing Chemical Co.,Ltd.
+86-21-37127788 CHINA 500 55
Henan Tianfu Chemical Co.,Ltd.
0371-55170693 CHINA 20795 55
Mainchem Co., Ltd.
+86-0592-6210733 CHINA 32764 55
Hefei TNJ Chemical Industry Co.,Ltd.
86-0551-65418684 18949823763
86-0551-65418684 China 1583 55
career henan chemical co
+86-371-86658258 CHINA 20001 58
Shanghai Macklin Biochemical Co.,Ltd. 15221275939
021-51821727 China 15835 55
Shanghai Aladdin Bio-Chem Technology Co.,LTD 021-20337333/400-620-6333
021-50323701 China 25127 65
Spectrum Chemical Manufacturing Corp. 021-67601398,18616765336,QQ:3003443156
021-57711696 China 9821 60
Shanghai neon biological technology co., LTD 021-54252912-8903 China 4821 58

View Lastest Price from Etanol manufacturers

Image Release date Product Price Min. Order Purity Supply Ability Manufacturer
2018-12-18 Etanol
US $1.00 / kg 1kg 95%-99% 10kg career henan chemical co

Etanol Spectrum

64-17-5(Etanol)Related Search:

Copyright 2017 © ChemicalBook. All rights reserved