ChemicalBook
Chinese Japanese Germany Korea

Acetophenone

General description Preparation of acetophenone Characterization of acetophenone production via acylation reaction of Friedel-Craffs Content Analysis Chemical Properties Uses Production method
Acetophenone
Acetophenone structure
CAS No.
98-86-2
Chemical Name:
Acetophenone
Synonyms
Dymex;HYPNONE;FEMA 2009;Acetofenon;Acetophene;hypnon[qr];phenacycle;usafek-496;Acetophenon;ACETPHENONE
CBNumber:
CB5694882
Molecular Formula:
C8H8O
Formula Weight:
120.15
MOL File:
98-86-2.mol

Acetophenone Properties

Melting point:
19-20 °C(lit.)
Boiling point:
202 °C(lit.)
Density 
1.03 g/mL at 25 °C(lit.)
vapor density 
4.1 (vs air)
vapor pressure 
0.45 mm Hg ( 25 °C)
refractive index 
n20/D 1.534(lit.)
FEMA 
2009 | ACETOPHENONE
Flash point:
180 °F
storage temp. 
2-8°C
solubility 
6.1g/l
form 
Liquid
color 
Clear colorless to light yellow
Odor
Pungent, floral odor
Relative polarity
4.4
explosive limit
1.4-5.2%(V)
Water Solubility 
5.5 g/L (20 ºC)
JECFA Number
806
Merck 
14,73
BRN 
605842
Exposure limits
No exposure limits are set. The health hazard from exposure to this compound should be low, due to its low vapor pressure and low toxicity.
Stability:
Stable. Incompatible with strong oxidizing agents, strong bases, strong reducing agents. Combustible.
InChIKey
KWOLFJPFCHCOCG-UHFFFAOYSA-N
CAS DataBase Reference
98-86-2(CAS DataBase Reference)
EWG's Food Scores
3
FDA UNII
RK493WHV10
NIST Chemistry Reference
Acetophenone(98-86-2)
EPA Substance Registry System
Acetophenone (98-86-2)
SAFETY
  • Risk and Safety Statements
Symbol(GHS) 
GHS02,GHS06,GHS08,GHS07
Signal word  Danger
Hazard statements  H227-H225-H301-H311-H331-H370-H315-H319-H335-H336-H351-H373-H302
Precautionary statements  P264-P270-P271-P304+P340+P312-P305+P351+P338+P337+P313-P370+P378-P403+P233-P405-P501-P210e-P280a-P301+P312a-P403+P235-P501a-P210-P260-P280-P301+P310-P311-P261-P281-P305+P351+P338-P301+P312+P330
Hazard Codes  Xn,T,F
Risk Statements  22-36-63-43-36/37/38-23/24/25-45-39/23/24/25-11-67-40
Safety Statements  26-36/37-24/25-23-53-45-16-7
RIDADR  UN 1593 6.1/PG 3
WGK Germany  1
RTECS  AM5250000
8
Autoignition Temperature 570 °C
TSCA  Yes
PackingGroup  III
HS Code  29143900
Toxicity LD50 orally in rats: 0.90 g/kg (Smyth, Carpenter)
NFPA 704
2
2 0

Acetophenone price More Price(25)

Manufacturer Product number Product description CAS number Packaging Price Updated Buy
Sigma-Aldrich 40411-U Acetophenone solution 5000 μg/mL in methanol, analytical standard 98-86-2 u $44.6 2018-11-13 Buy
Sigma-Aldrich 00790 Acetophenone puriss. p.a., ≥99.0% (GC) 98-86-2 250ml $57.6 2018-11-13 Buy
TCI Chemical A0061 Acetophenone >98.5%(GC) 98-86-2 25g $14 2019-12-02 Buy
TCI Chemical A0061 Acetophenone >98.5%(GC) 98-86-2 500g $46 2019-12-02 Buy
Alfa Aesar A12727 Acetophenone, 99% 98-86-2 2500ml $88.2 2019-12-02 Buy

Acetophenone Chemical Properties,Uses,Production

General description

Acetophenone is also known as acetyl benzene with the boiling point (℃) being 202.3, relative density (water = 1) being 1.03 (20 ℃) and the relative vapor density (air = 1) being 4.14. It is the simplest aromatic ketones with its aromatic core (benzene ring) being directly connected with a carbonyl group. It is presented in some kinds of essential oils of some plants in its free-state form. It is pure colorless crystals. Most commercially available product appears as pale yellow oily liquid with hawthorn like aroma. It is only slightly soluble in water and is easily soluble in many organic solvents and can be evaporated together with the steam. The molecular structure of acetophenone: methyl C atom is bonded through sp3 hybrid orbital while the benzene ring and the carbonyl C atom are bonded through sp2 hybrid orbital. Addition reaction and [alpha] active hydrogen reaction can occur for the carbonyl group of acetophenone. It can also have electrophilic substitution reaction in its benzene ring with the major product generated being in the meta-position. Acetophenone can be produced from the reaction between benzene with acetyl chloride, acetic anhydride or acetate under the catalysis of aluminum trichloride. Furthermore, when ethylbenzene is catalyzed and oxidized into styrene, it can also generate acetophenone as by-product. Acetophenone is mainly used as the raw materials for pharmaceuticals and other kind of organic synthesis. It can also used for the preparation of spices, soap and cigarettes as well as being used as the solvents of cellulose ether, cellulose ester and resin and plasticizer. It has hypnotic effect. Currently, acetophenone is mostly obtained via the by-product of reaction between phenol and acetone via cumene oxidation. It may be obtained through the acetylation on benzene through acetyl chloride.

Preparation of acetophenone

Instruments and medicines
Drugs: acetic anhydride, benzene, magnesium sulfate, sodium hydroxide, aluminum chloride, hydrochloride;
Instrument: dropping funnel, round bottom flask, condenser pipe, distillation device, drying pipe, and stirring apparatus.
[Processing Steps]
To a 100 mL three-necked flask equipped with 10 ml pressure-equalizing dropping funnel, a mechanical stirrer and a reflux condenser (the upper termini is connected with a hydrogen chloride gas absorption device via a calcium chloride drying tube), add rapidly of 13 g (0.097mol) of anhydrous powdered aluminum trichloride and 16 ml (about 14g, 0.18mol) of anhydrous benzene. Under stirring, add 4 mL (about 4.3g, 0.04mol) of acetic anhydride from a dropping funnel drop wise to a three-necked flask (first add few drops and continue the dropping after the occurrence of the reaction). It is recommended to make the three-necked flask a bit heat through controlling the dropping rate of the acetic anhydride. After the completion of the addition process (about 10 min), stir and reflux in the boiling water bath until the reaction becomes a bit moderate until no more hydrogen chloride gas is released.
The reaction mixture was cooled to room temperature. Upon stirring, pour the reaction mixture to a beaker containing 18 mL of hydrochloric acid and 30 g of broken ices (in a fume hood), and if there is still solid insolubles, you can supplement an appropriate amount of concentrated hydrochloric acid to make it be completely dissolved. The mixture was transferred to a separatory funnel with the organic layer being separated (which one?) and the aqueous layer was extracted twice with benzene (per 8ml). Combine the organic layers and successively wash with 15 mL of 10% sodium hydroxide, 15 ml of water and dry with anhydrous magnesium sulfate.
First distill for recycle of benzene in a water bath and then heat in the asbestos-free wire gauze residual to remove the benzene. After the cooling, change to the air condenser (Why?) Distill to collect the fraction of 195~202 ℃ with the yield being about 4.1 g (yield: 85%) . The pure product of acetophenone appears as colorless transparent oily liquid.
[Precautions]
1, the time for adding drop wise of the mixture of acetophenone and acetic anhydride should be 10 min; the temperature is difficult to be controlled if the drops rate is too fast.
2, the quality of the anhydrous aluminum chloride is the key for the success of this experiment opening the lid with the white powder can release a lot of smoke with no agglomeration being good. If most of the fraction turns yellow, this means that it has been already degraded and can’t not been used any more.
3, AlCl3 needs to be crushed with rapid speed.
4, upon the addition of dilute HCl, slowly drop at the beginning and then drop faster gradually; the amount of the dilute HCl (1: 1, pre-prepared) should be about 140ml.
5, the absorption apparatus: about 20% sodium hydroxide solution, self-made, 200mL, pay special attention to the prevention of suck-buck.
6, it is better to use analytically pure benzene and should be preferably dried by sodium silk for 24 hours or more.
7, the small amount of water in the crude product is distilled out together with benzene as an azeotrope during the process of distillation with the azeotropic point being 69.4 °C. This is also one of the methods for drying a liquid compound.
The above information is edited by the chemicalbook of Dai Xiongfeng.

Characterization of acetophenone production via acylation reaction of Friedel-Craffs

1, the catalyst (aluminum trichloride) used in the acylation greatly exceeds the amount of the catalyst used in the alkylation reaction, the resulting acetophenone can form complex with an equivalent amount of aluminum chloride while by-product acetic acid formed in the reaction can also form salt with an equivalent of aluminum chloride. Therefore, during the acylation reaction, one molecule of acid anhydride can consume two or more molecules of aluminum chloride.
2, acetophenone/aluminum chloride complex formed during the reaction is stable in anhydrous medium, only when the reaction mixture undergoes hydrolysis, the complex is destroyed with precipitating acetophenone. After the aluminum chloride forms complex with acetophenone, it no longer participates in the reaction, therefore, the amount of aluminum chloride should meet the requirement that: after the formation of complex, there still remains certain part as the catalyst of the acylation reaction.
3, since the aluminum chloride can form a complex with substance containing a carboxyl group, the raw material, acetic anhydride can also form molecular complex with aluminum chloride and no longer participate in the reaction, meaning that acetic anhydride can’t been quantitatively converted to acetophenone; Furthermore, in the reaction, when the amount of aluminum chloride is in excess, it can act as the acylating agent for making the acetate into acetyl chloride to participate into the reaction.
4, in the reaction system, the amount of benzene is also in large excess because the benzene is not only the reactant but also the solvent in the reaction, therefore, only the yield of acetyl can be used as the reference reagent.
5, the characteristics of the acylation reaction: pure product, high yield (since acyl does not have isomerization, nor has multiple substitution)

Content Analysis

Accurately weigh sample of about 1g, determine it according to the method 1 in the "determination of aldehydes and ketones" (OT-7), wherein the heating time was 1h and the equivalency factors (e) in the calculation was 60.08.

Chemical Properties

The pure product is white plate-like crystal. The general merchandises always contain impurities. At temperature above 20 °C, it is colorless or slightly yellow transparent liquid above with strong acacia-like sweet aroma. It has the melting point of 19.7 ℃, boiling point of 202 ℃ and the flash point of 76 ℃. It can be subject to spontaneous burning. It is extremely easily to be dissolved in propylene glycol and non-volatile oil, soluble in chloroform, ether and ethanol (1ml dissolved in 5mL 50% ethanol), slightly soluble in water and propylene glycol and insoluble in glycerol.
The natural product is presented in labdanum oil and orris oil.

Uses

When being used as a solvent, it is characterized with high boiling point, high stability and pleasant odor. It has a similar solubility as cyclohexanone and can dissolved nitrocellulose; cellulose acetate; vinyl resin; coumarone resins; alkyd resins; glycerol alkyd resins. It is often used in mixture with ethanol; ketones; esters and other solvents. When being used as a spice, it is the blending raw material of spices of hawthorn; Mimosa and lilac and is widely applied to soap flavor and tobacco flavor. It is used for the synthesis of mandelic acid; α-phenyl indole and ibuprofen as well as being used as the plastic plasticizer.
Naturally-existing: it is presented in milk, cheese, cocoa, raspberries, peas and Sri Lanka cinnamon oil.
Odor: it has almond flavor similar as benzaldehyde with dilution generating a sweet nut and fruit-like flavor.
Application suggestions: it can be applied to the formulation of editable spices of cherries, nuts, tomatoes, strawberries, apricots and s on. It can also be used in tobacco spice.
Recommendation: the final concentration in the flavoring foods should be about 0.6~20mg/kg.
Regulatory information: The FEMA number of acetophenone is 2009, FDA number is 172.515, CoE number is 138. China GB 2760-1996 has approved it for being applied to food spices.
GB 2760--1996 provides it for the use of food flavors. It is mainly used for preparation of the spices of grapes, cherries and other fruits and tobacco.
It can be used as solvent, extraction agent as well as being applied to pharmaceutical industry.
It can be used as a solvent, olefin polymerization catalyst as well as being used for the manufacture of spices.
It can be used in combination with anise aldehyde and coumarin to spices of hawthorn flowers, sunflower, new mow, lavender, fern, lilac, shy flowers and acacia. Because of its cheap price, it is often applied to the perfuming of soap, detergents, and industrial product in a small amount (<1%). It can also be applied to food flavor such as almond, cherry, walnut, vanilla and tonka bean in trace amount. It can also be applied to the perfuming of tobacco.

Production method

Under the catalysis of aluminum trichloride, we can use benzene for reaction with acetyl chloride, acetic anhydride or acetic acid to obtain acetophenone. In addition, in the catalytic oxidation of ethylbenzene to styrene, acetophenone is generated as the byproduct. Industrial grade acetophenone contains main impurities such as α-methylbenzyl alcohol, phenols, acids, and water. The industrial grade product and be refined through drying with calcium chloride and sulfuric acid and further vacuum distillation after the drying. Alternatively, it can also be subject to fractional crystallization refinement from the molten state in the condition of avoiding light and moisture. We can also use pentane for crystallization and refinement in low temperature. Fixed material consumption: benzoic acid: 1130kg/t, acetic acid 555kg/t.

Description

Acetophenone is the simplest aromatic ketone and is a clear liquid/crystal and very slightly soluble in water with a sweet pungent taste and odour resembling oranges. It is used as a polymerisation catalyst for the manufacture of olefins. Acetophenone is used in perfumery as a fragrance ingredient in soaps, detergents, creams, lotions, and perfumes; as a flavouring agent in foods, non-alcoholic beverages, and tobacco; as a specialty solvent for plastics and resins; as a catalyst for the polymerisation of olefins; and as a photosensitiser in organic syntheses. Acetophenone is a raw material for the synthesis of some pharmaceuticals and is also listed as an approved excipient by the U.S. FDA. Acetophenone occurs naturally in many foods such as apple, apricot, banana, and beef. Acetophenone has been detected in ambient air and drinking water; exposure of the general public may occur through the inhalation of contaminated air or the consumption of contaminated water. It is highly flammable and will get easily ignited by heat, sparks, or flames, and the vapours may form explosive mixtures with air.

Chemical Properties

Acetophenone has a characteristic sweet, pungent and strong medicinal odor with a bitter, aromatic cherry branch taste. It is useful in flavors of grape, cherry and tobacco

Chemical Properties

Acetophenone is a colorless, oily liquid with a sweet, floral odor.It is a naturally occurring component of a large number of foods and essential oils.
Acetophenone can be hydrogenated catalytically to 1-phenylethanol. It is obtained as a by-product in the Hock phenol synthesis and is purified from the high-boiling residue by distillation. The quantities obtained from this source satisfy the present demand.
Acetophenone is used for perfuming detergents and industrial products and is an intermediate in the synthesis of other fragrance materials.

Occurrence

Reported found in cocoa, beef, raspberry, peas, and concord grape

Uses

Solvent for Resins, Plastics, Cellulose Ethers and Esters, Intermediate for the F&F market.

Uses

Acetophenone is used in perfumery, as aphotosensitizer in organic synthesis, and asa catalyst in olefin polymerization.In perfumery to impart an orange-blossom-like odor; in organic syntheses, especially. as photosensitizer.

Uses

Acetophenone is a reagent used in the production of fragrances and resin polymers.

Definition

ChEBI: A methyl ketone that is acetone in which one of the hydrogens of the methyl group has been replaced by a phenyl group.

Preparation

From benzene and acetylchloride in the presence of aluminum chloride or by catalytic oxidation of ethyl benzene; also prepared by fractional distillation and crystallization from the essential oil of Stirlingia latifolia.

Aroma threshold values

Detection: 170 ppb; Recognition: 2.9 ppm

Taste threshold values

Taste characteristics at 10 ppm: sweet, nutty, benzaldehyde with musty, fruity notes

General Description

A colorless liquid with a sweet pungent taste and odor resembling the odor of oranges. Melting point 20.5°C (68.9°F); freezes under cool conditions. Slightly soluble in water and denser than water. Hence sinks in water. Vapor heavier than air. Flash point 180°F. A mild irritant to skin and eyes. Vapors can be narcotic in high concentrations. Used as a flavoring, solvent, and polymerization catalyst.

Air & Water Reactions

Slightly soluble in water.

Reactivity Profile

Acetophenone reacts with many acids and bases liberating heat and flammable gases (e.g., H2). Reacts with many oxidizing agents. Reacts with reducing agents such as hydrides, alkali metals, and nitrides to produce flammable gas (H2) and heat. The amount of heat in these reactions may be sufficient to start a fire in the unreacted portion. Incompatible with isocyanates, aldehydes, cyanides, peroxides, and anhydrides.

Health Hazard

Acetophenone is an irritant, mutagen, and amildly toxic compound. In rabbits 0.77 mgproduced severe eye irritation, but the actionon skin was mild. In mice, subcutaneousadministration of this compound producedsleep; a dose of 330 mg/kg was lethal.
LD50 value, intraperitoneal (mice): 200mg/kg
No symptoms of severe toxicity, nor its carcinogenicityin humans, has been reported..

Fire Hazard

Combustible liquid; flash point (closed cup) 82°C (180°F); vapor pressure 1 torr at 37°C (98.6°F); vapor density 4.1 (air = 1); autoignition temperature 570°C (1058°F); fire-extinguishing agent: dry chemical, foam, or CO2; water may cause frothing, but it can be used to flush and dilute the spill. Its reaction with strong oxidizers may be violent.

Safety Profile

Poison by intraperitoneal and subcutaneous routesModerately toxic by ingestion. A skin and severe eye irritant. Mutation data reported. Narcotic in high concentration. A hypnotic. Flammable liquid. To fight fire, use foam, CO2, dry chemical. When heated to decomposition it emits acrid smoke and fumes. See also IGTONES

Potential Exposure

Acetophenone is used as a solvent and in perfume manufacture to impact a pleasant jasmine or orange-blossom odor. It is used as a catalyst in olefin polymerization and as a flavorant in tobacco. It is also used in the synthesis of pharmaceuticals

Carcinogenicity

No carcinogenicity studies were identified for acetophenone. The U.S. EPA has classified acetophenone as a Category D, not classifiable as to human carcinogenicity.

Shipping

UN1993 Flammable liquids, n.o.s., Hazard Class: 3; Labels: 3-Flammable liquid, Technical Name Required.

Purification Methods

Dry it by fractional distillation or by standing with anhydrous CaSO4 or CaCl2 for several days, followed by fractional distillation under reduced pressure (from P2O5, optional), and careful, slow and repeated partial crystallisations from the liquid at 0o excluding light and moisture. It can also be crystallised at low temperatures from isopentane. Distillation can be followed by purification using gas-liquid chromatography [Earls & Jones J Chem Soc, Faraday Trans 1 71 2186 1975.] [Beilstein 7 H 271, 7 IV 619.] § A commercial polystyrene supported version is available — scavenger resin (for diol substrates).

Incompatibilities

May form explosive mixture with air. See flash point, above. Reacts violently with strong oxidizers, many acids, bases, amines, amides, and inorganic hydroxides; alkali metals; hydrides, and nitrides. Reacts with reducing agents; alkali metals; hydrides, nitrides. Contact with all preceding materials release heat and flammable gases, including hydrogen; the heat may be sufficient enough to result in fire. Incompatible with aldehydes, aliphatic amines, alkanolamines, cyanides, isocyanates, organic acids, peroxides; perchloric acid. May attack plastics, and some rubbers and coatings

Waste Disposal

Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal. Incineration, preferably with a flammable solvent

Acetophenone Preparation Products And Raw materials

Raw materials

Preparation Products


Acetophenone Suppliers

Global( 348)Suppliers
Supplier Tel Fax Email Country ProdList Advantage
Henan DaKen Chemical CO.,LTD.
+86-371-55531817
info@dakenchem.com CHINA 21806 58
Henan Tianfu Chemical Co.,Ltd.
0371-55170693
0371-55170693 info@tianfuchem.com CHINA 22631 55
Hebei Chisure Biotechnology Co., Ltd.
+8613292890173
0311 66567340 luna@speedgainpharma.com CHINA 1012 58
Shanghai Zheyan Biotech Co., Ltd.
18017610038
zheyansh@163.com CHINA 3623 58
career henan chemical co
+86-371-86658258
sales@coreychem.com CHINA 30053 58
Chemwill Asia Co.,Ltd.
86-21-51086038
86-21-51861608 chemwill_asia@126.com;sales@chemwill.com;chemwill@hotmail.com;chemwill@gmail.com CHINA 23978 58
Hubei Jusheng Technology Co.,Ltd.
86-18871470254
027-59599243 sales@jushengtech.com CHINA 28235 58
Haihang Industry Co.,Ltd
86-531-88032799
+86 531 8582 1093 export@haihangchem.com CHINA 8734 58
QUALITY CONTROL CHEMICALS INC.
(323) 306-3136
(626) 453-0409 orders@qcchemical.com United States 8407 58
Yunbio Tech Co.,Ltd.
010-60605551
010-60605551 yunbiochem@126.com CHINA 258 58

View Lastest Price from Acetophenone manufacturers

Image Release date Product Price Min. Order Purity Supply Ability Manufacturer
2018-08-06 Acetophenone
98-86-2
US $1.00 / KG 1KG 99% Customized career henan chemical co

Acetophenone Spectrum


98-86-2(Acetophenone)Related Search:


Copyright 2017 © ChemicalBook. All rights reserved