ChemicalBook
Chinese English Japanese Germany Korea

디에틸에테르

디에틸에테르
디에틸에테르 구조식 이미지
카스 번호:
60-29-7
한글명:
디에틸에테르
동의어(한글):
에틸에테르;디에틸산화물;산화에틸;술푸릭에테르;에테르;에테르,A.C.S.리전트,아브솔루트(알드리치케미칼컴패니);에톡시에탄;디에틸에테르;에틸에터;디에틸에테르;다이에틸 에테르;1,1-옥시비스에탄;디에틸 산화물;디에틸 에테르;산화 에틸;술푸릭 에테르;에틸 에테르
상품명:
Diethyl ether
동의어(영문):
αther;Aether;(C2H5)2O;Pronarcol;ETHER,USP;AETHER DAB;αthylαther;Ethyl ether;ether,ethyl;Ethy1 Ether
CBNumber:
CB6853949
분자식:
C4H10O
포뮬러 무게:
74.12
MOL 파일:
60-29-7.mol

디에틸에테르 속성

녹는점
-116 °C
끓는 점
34.6 °C(lit.)
밀도
0.714
증기 밀도
2.6 (vs air)
증기압
28.69 psi ( 55 °C)
굴절률
n20/D 1.3530(lit.)
인화점
-40 °F
저장 조건
Store at RT.
용해도
Soluble in water, miscible with ethanol (96 per cent), with methylene chloride and with fatty oils. It is highly flammable.
물리적 상태
Liquid
색상
max. 10
Specific Gravity
0.714 (20/4℃) ; 0.712 (25℃)
상대극성
2.9
냄새
Pungent odor detectable at 0.33 ppm
폭발한계
1.7-36%(V)
수용성
69 g/L (20 ºC)
어는점
-116.3℃
Merck
14,3806
Henry's Law Constant
12.50(x 10-4 atm?m3/mol at 25 °C) (Signer et al., 1969)
노출 한도
TLV-TWA 1200 mg/m3 (400 ppm) (ACGIH and OSHA); STEL 1500 mg/m3 (500 ppm) (ACGIH).
안정성
Stable, but light-sensitive, sensitive to air. May contain BHT (2,6-di-tert-butyl-4-methylphenol) as a stabilizer. Substances to be avoided include zinc, halogens, halogen-halogen compounds, nonmetals, nonmetallic oxyhalides, strong oxidizing agents, chromyl chloride, turpentine oils, turps substitutes, nitrates, metallic chlorides. Extre
CAS 데이터베이스
60-29-7(CAS DataBase Reference)
NIST
Ethoxy ethane(60-29-7)
EPA
Ethyl ether (60-29-7)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 F+,Xn,T,F
위험 카페고리 넘버 12-19-22-66-67-39/23/24/25-23/24/25-11
안전지침서 9-16-29-33-45-36/37-7
유엔번호(UN No.) UN 1155 3/PG 1
WGK 독일 1
RTECS 번호 KI5775000
F 고인화성물질 10
자연 발화 온도 160 °C
TSCA Yes
HS 번호 2909 11 00
위험 등급 3
포장분류 I
유해 물질 데이터 60-29-7(Hazardous Substances Data)
독성 LD50 oral (rat) 1215 mg/kg
LC50 inhal (rat) 73,000 ppm (2 h)
PEL (OSHA) 400 ppm

STEL (ACGIH) 500 ppm
기존화학 물질 KE-27690
그림문자(GHS):
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H224 극인화성 액체 및 증기 인화성 액체 구분 1 위험
H302 삼키면 유해함 급성 독성 물질 - 경구 구분 4 경고 P264, P270, P301+P312, P330, P501
H336 졸음 또는 현기증을 일으킬 수 있음 특정표적장기 독성 물질(1회 노출);마취작용 구분 3 경고 P261, P271, P304+P340, P312,P403+P233, P405, P501
예방조치문구:
P210 열·스파크·화염·고열로부터 멀리하시오 - 금연 하시오.
P261 분진·흄·가스·미스트·증기·...·스프레이의 흡입을 피하시오.
P303+P361+P353 피부(또는 머리카락)에 묻으면 오염된 모든 의복은 벗거나 제거하시오 피부를 물로 씻으시오/샤워하시오.
P405 밀봉하여 저장하시오.
NFPA 704
4
1 1

디에틸에테르 C화학적 특성, 용도, 생산

물성

무색의 유동하지 않는 액체인데 단맛, 자극적인 냄새가 있다. 녹는점 -116.2℃, 끓는점 34.5℃, 0.7135, 1.35424. 알코올과 임의의 비율로 혼합되고 물에 조금 녹는다. 휘발성으로 인화되기 쉽고 공기와의 혼합물은 폭발을 일으킨다. 공기에 의해 복잡한 산화를 받아 과산화물을 만든다. 할로겐, 클로로포름, 금속염 등과 첨가 화합물을 형성한다. 6국에는 에테르 및 마취용 에테르가 기록되어 있다. 모두 에틸에테르 함량 96~98%, 소량의 에틸알코올 및 물을 함유한다.

용도

1) 마취용 에테르는 물로 씻어 염화칼슘으로 건조하고 재증류하여 만든다. 약국방에서는 특히 용기에서 꺼내 24시간 이상 경과한 것을 마취용으로 사용하면 안 되는 것을 주의로 규정하고 있다. 이것은 광선과 공기 중의 산소에 의해 자동 산화를 일으켜 아세트알데히드와 과산화물을 생성하고 특히 후자는 폐렴, 기관지염을 일으키기 쉽기 때문이다. 흡입 마취약으로 가장 많이 사용된다. 2) 금속의 염화물을 염산 용액에서 추출 분리하는 데 사용되는 중요한 시약의 하나.

합성

알코올에 진한 황산을 첨가하고 가열하여 유출시킨다. 공업적으로는 에틸렌에서 에틸알코올 합성시의 부산물로 얻어진다.

화학적 성질

Ether, (C2H5)2,also known as ethyl ether, is a colorless liquid. It is used as a solvent,a denaturant, and as an anesthetic in medicine. lt is an organic compound in which two hydrocarbon radicals are joined by an atom of oxygen.

화학적 성질

Ethyl ether is a colorless, mobile, highly flammable, volatile liquid. Characteristic pungent odor. The Odor Threshold is 0.63 ppm.

물리적 성질

Colorless, hygroscopic, volatile liquid with a sweet, pungent odor. Odor threshold concentration is 330 ppb (quoted, Keith and Walters, 1992).

역사

Ether was supposedly discovered by Raymundus Lullus (1232–1315) around 1275, although there is no extant evidence of this in his writings. The discoverer of ether is often credited to the German physician and botanist Valerius Cordus (1515–1554), who gave the first description of the preparation of ether in the mid-16th century. Cordus called the substance oleum vitrioli dulce, which is translated as sweet oil of vitriol. Cordus used sulfuric acid (oil of vitriol) to catalyze the conversion of alcohol to ether. At approximately the same time Paracelsus (1493–1541), a Swiss physician who is also cited as a discoverer of ether, observed that chickens were safely put to sleep by breathing vapors from sweet oil of vitriol. In 1730, August Siegmund Frobenius changed the name of sweet vitriol to ether.

용도

Ethyl ether is used as a solvent for fats, oils,waxes, gums, perfumes, and nitrocellulose;in making gun powder; as an anesthetic; andin organic synthesis.

용도

Ether was applied topically, inhaled, and consumed for medical purposes well before it was used as an anesthetic. Ether is only slightly soluble in water (6.9%), but it is a good solvent for nonpolar organic compounds. Approximately 65% of ether production is used as a solvent for waxes, fats, oils, gums, resins, nitrocellulose, natural rubber, and other organics. As a solvent, it is used as an extracting agent for plant and animal compounds in the production of pharmaceuticals and cosmetics. Another 25% of total ether production is used in chemical synthesis. It is an intermediate used in the production of monoethanolamine (MEA, C2H7NO). Ether is used in the production of Grignard reagents. A Grignard reagent has the general form RMgX, where R is an alkyl or aryl group and X is a halogen. Grignard reagents are widely used in industrial organic synthesis. A Grignard reagent is typically made by reacting a haloalkane with magnesium in an ether solution, for example, CH3I + MgCH3MgI. Ether is a common starting fluid, especially for diesel engines.

용도

Solvent for waxes, fats, oils, perfumes, alkaloids, gums. Excellent solvent for nitrocellulose when mixed with alcohol. Important reagent in organic syntheses, especially in Grignard and Wurtz type reactions. Easily removable extractant of active principles (hormones, etc.) from plant and animal tissues. In the manufacture of gun powder. As primer for gasoline engines.

용도

ethyl ether is a solvent that may cause skin irritation. Although considered a non-comedogenic raw material, it is rarely used in cosmetics.

용도

Diethyl ether has been used extensively as a general anesthetic.

정의

ChEBI: An ether in which the oxygen atom is linked to two ethyl groups.

생산 방법

Ether is produced by the dehydration of ethanol using sulfuric acid: 2CH3CH2OH +2H2SO4 → (CH3CH2)2O + H2SO4 + H2O.the temperature of the reaction is carriedout at about 140°C to control for unwanted products.the volatile ether is distilled from themixture. Ether can also be prepared by Williamson synthesis. In this reaction, ethanol reactswith sodium to form sodium ethanolate (Na+C2H5O?). Sodium ethanolate then reacts withchloroethane to form ether and sodium chloride: Na+C2H5O? +C2H5Cl → C2H5OC2H5 +NaCl. Ether is also produced as a by-product in the production of ethanol.

정의

diethyl ether: A colourless flammablevolatile ether, C2H5OC2H5; r.d. 0.71;m.p. –116°C; b.p. 34.5°C. It can bemade by Williamson’s synthesis. Itis an anaesthetic and useful organicsolvent.

일반 설명

A clear colorless liquid with an anesthetic odor. Flash point -49°F. Less dense than water and slightly soluble in water. Hence floats on water. Vapors are heavier than air. Used as a solvent and to make other chemicals.

공기와 물의 반응

Highly flammable. Oxidizes readily in air to form unstable peroxides that may explode spontaneously [Bretherick, 1979 p.151-154, 164]. A mixture of liquid air and Diethyl ether exploded spontaneously, [MCA Case History 616(1960)].

반응 프로필

Occasional explosions have occurred when aluminum hydride was stored in ether. The explosions have been blamed on the presence of carbon dioxide impurity in the ether, [J. Amer. Chem. Soc. 70:877(1948)]. Diethyl ether and chromium trioxide react violently at room temperature. Solid acetyl peroxide in contact with ether or any volatile solvent may explode violently. A 5-gram portion in ether detonated while being carried, [Chem. Eng. News 27:175(1949)]. Nitrosyl perchlorate ignites and explodes with Diethyl ether. A mixture of ether and ozone forms aldehyde and acetic acid and a heavy liquid, ethyl peroxide, an explosive, [Mellor 1:911(1946-1947)].

위험도

CNS depressant by inhalation and skin absorption. Very flammable, severe fire and explosion hazard when exposed to heat or flame. Forms explosive peroxides. Explosive limits in air 1.85– 48%.

건강위험

Vapor inhalation may cause headache, nausea, vomiting, and loss of consciousness. Contact with eyes will be irritating. Skin contact from clothing wet with the chemical may cause burns.

건강위험

Ethyl ether is a narcotic substance and a mildirritant to the skin, eyes, and nose; at lowconcentrations, <200 ppm in air, exposure tothis compound does not produce noticeableeffects in humans. Eye and nasal irritationmay become intolerable at 250–300 ppm.Repeated exposure can cause drying andcracking of skin, due to extraction of oils.
Inhalation of its vapors at high concentra tions, above 1% (by volume in air), couldbe hazardous to human health. A concen tration of 3.5–6.5% could produce an anes thetic effect; respiratory arrest may occurabove this concentration (Hake and Rowe1963). Inhalation of 10% ethyl ether by vol ume in air can cause death (ACGIH 1986).Repeated exposure to this compound exhib ited the symptoms of exhaustion, loss ofappetite, sleepiness, and dizziness
Acute oral toxicity of ethyl ether wasfound to be low to moderate, varying withspecies. Ingestion of 300–350 mL can befatal to humans.
LC50 value, inhalation (mice): 6500 ppm/100 min
LD50 value, oral (rats): 1215 mg/kg
In a comparison with other anestheticagents, diethyl ether was reported to beless toxic than methoxyfluorane [76-38-0], halothane , and isoflurane on test animals upon repeatedexposures at subanesthetic concentrations(Chenoweth et al. 1972; Stevens et al. 1975).At 2000 ppm it did not cause hepatotoxicresponses. Matt et al. (1983) reportedthat ether exposure for 6 minutes inducedsignificant and variable elevations of serumprolactin in female goldenhamsters
In contrast to volatile hydrocarbons, therespiratory arrest caused by ethyl etherwas reversible (Swann et al. 1974). Suchreversibility, however, was observed at alower concentration, about 105 ppm for a 5-minute exposure period in mice. There is noreport of its carcinogenicity in animals orhumans.

건강위험

The acute toxicity of diethyl ether is low. Inhalation of high concentrations can cause sedation, unconsciousness, and respiratory paralysis. These effects are usually reversible upon cessation of exposure. Diethyl ether is mildly irritating to the eyes and skin, but does not generally cause irreversible damage. Repeated contact can cause dryness and cracking of the skin due to removal of skin oils. The liquid is not readily absorbed through the skin, in part because of its high volatility. Diethyl ether is slightly toxic by ingestion. Diethyl ether is regarded as having adequate warning properties. There is no evidence for carcinogenicity of diethyl ether, and no reproductive effects have been reported. Chronic exposure to diethyl ether vapor may lead to loss of appetite, exhaustion, drowsiness, dizziness, and other central nervous system effects.

화재위험

Behavior in Fire: Vapor is heavier than air and may travel considerable distance to a source of ignition and flash back. Decomposes violently when heated.

화재위험

Diethyl ether is extremely flammable (NFPA rating = 4) and is one of the most dangerous fire hazards commonly encountered in the laboratory, owing to its volatility and extremely low ignition temperature. Ether vapor may be ignited by hot surfaces such as hot plates and static electricity discharges, and since the vapor is heavier than air, it may travel a considerable distance to an ignition source and flash back. Ether vapor forms explosive mixtures with air at concentrations of 1.9 to 36% (by volume). Carbon dioxide or dry chemical extinguishers should be used for ether fires. Diethyl ether forms unstable peroxides on exposure to air in a reaction that is promoted by light; the presence of these peroxides may lead to explosive residues upon distillation.

인화성 및 폭발성

Diethyl ether is extremely flammable (NFPA rating = 4) and is one of the most dangerous fire hazards commonly encountered in the laboratory, owing to its volatility and extremely low ignition temperature. Ether vapor may be ignited by hot surfaces such as hot plates and static electricity discharges, and since the vapor is heavier than air, it may travel a considerable distance to an ignition source and flash back. Ether vapor forms explosive mixtures with air at concentrations of 1.9 to 36% (by volume). Carbon dioxide or dry chemical extinguishers should be used for ether fires. Diethyl ether forms unstable peroxides on exposure to air in a reaction that is promoted by light; the presence of these peroxides may lead to explosive residues upon distillation.

화학 반응

Reactivity with Water No reaction; Reactivity with Common Materials: No reaction; Stability During Transport: Stable; Neutralizing Agents for Acids and Caustics: Not pertinent; Polymerization: Not pertinent; Inhibitor of Polymerization: Not pertinent.

공업 용도

Diethyl ether as a commercial product is available in several grades and is used as an extraction solvent, reaction solvent, and as a general anesthetic. Ethyl ether is an excellent solvent for alkaloids, dyes, fats, gums, oils, resins, and waxes. Blends of ethyl ether and ethanol are excellent solvents for cellulose nitrate used in the manufacture of guncotton, in collodion solutions and pyroxylin plastics. Ethyl ether is used in the recovery of acetic acid from aqueous solutions in the cellulose acetate and plastic industry. It is used as a starter fuel for diesel engines and as a denaturant in denatured ethanol formulations. Grignard and Wurtz-Fillig synthesis reactions use diethyl ether as an anhydrous, inert reaction medium.

Safety Profile

Moderately toxic to humans by ingestion. Poison experimentally by subcutaneous route. Moderately toxic by intraperitoneal and intravenous routes. badly toxic by inhalation. Human systemic effects by inhalation: olfactory changes. Mutation data reported. A severe eye and moderate skin irritant. Ethyl ether is not corrosive or dangerously reactive. It must not be considered safe for indlviduals to inhale or ingest. It is a depressant of the central nervous system and is capable of producing intoxication, drowsiness, stupor, and unconsciousness. Death due to respiratory failure may result from severe and continued exposure. A very dangerous fire and explosion hazard when exposed to heat or flame. A storage hazard. It auto-oxidizes to form explosive polymeric 1 -oxy-peroxides. Explosive reaction with boron triazide, bromine trifluoride, bromine pentafluoride, perchloric acid, uranyl nitrate + light, wood pulp extracts + heat. Violent reaction or igmtion on contact with halogens (e.g., bromine, chlorine), interhalogens (e.g., iodine heptafluoride), oxidants (e.g., silver perchlorate, nitrosyl perchlorate, nitryl perchlorate, chromyl chloride, fluorine nitrate, permanganic acid, nitric acid, hydrogen peroxide, peroxodisulfuric acid, iodine(VⅡ) oxide, solum peroxide, ozone, and liquid air), sulfur and sulfur compounds (e.g., sulfur when dried with peroxidzed ether, sulfuryl chloride). Can react vigorously with acetyl peroxide, air, bromoazide, ClF3, CrO3, Cr(OCl)2, LiAlH2, NOClO4,02, NClO2, (H2so4 + permanganates), K2O2, [(C2H5)3di + air], [(CH3)d + air]. To fight fire, use alcohol foam, CO2, dry chemical. Used in production of drugs of abuse. When heated to decomposition it emits acrid smoke and irritating fumes. See also ETHERS.

잠재적 노출

Ethyl ether is used as a solvent for waxes, fats, oils, perfumes, alkaloids, dyes, gums, resins, nitrocellulose, hydrocarbons, raw rubber, and smokeless powder. It is also used as an inhalation anesthetic; a refrigerant; in diesel fuels; in dry cleaning; as an extractant; and as a chemical reagent for various organic reactions

환경귀착

Photolytic. The rate constant for the reaction of ethyl ether and OH radicals in the atmosphere at 300 K is 5.4 x 10-12 cm3/molecule?sec (Hendry and Kenley, 1979).
Chemical/Physical. The atmospheric oxidation of ethyl ether by OH radicals in the presence of nitric oxide yielded ethyl formate as the major product. Minor products included formaldehyde and nitrogen dioxide. In the absence of nitric oxide, the products were ethyl formate and acetaldehyde (Wallington and Japar, 1991).
Ethyl ether will not hydrolyze (Kollig, 1993).

저장

ether should be used only in areas free of ignition sources (including hot plates, incandescent light bulbs, and steam baths), and this substance should be stored in tightly sealed metal containers in areas separate from oxidizers. Because of the tendency of diethyl ether to form peroxides on contact with air, containers should be dated upon receipt and at the time they are opened. Diethyl ether is generally supplied with additives that inhibit peroxide formation; distillation removes these inhibitors and renders the liquid more prone to peroxide formation. Material found to contain peroxides should be treated to destroy the peroxides before use or disposed of properly.

운송 방법

UN1155 Diethyl ether or Ethyl ether, Hazard Class: 3; Labels: 3-Flammable liquid

Purification Methods

Usual impurities are water, EtOH, diethyl peroxide (which is explosive when concentrated), and aldehydes. Peroxides [detected by liberation of iodine from weakly acid (HCl) solutions of KI, or by the blue colour in the ether layer when 1mg of Na2Cr2O7 and 1 drop of dilute H2SO4 in 1mL of water is shaken with 10mL of ether] can be removed in several different ways. The simplest method is to pass dry ether through a column of activated alumina (80g Al2O3/700mL of ether). More commonly, 1L of ether is shaken repeatedly with 5-10mL of a solution comprising 6.0g of ferrous sulfate and 6mL of conc H2SO4 in 110mL of water. Aqueous 10% Na2SO3 or stannous chloride can also be used. The ether is then washed with water, dried for 24hours with CaCl2, filtered and dried further by adding sodium wire until it remains bright. The ether is stored in a dark cool place, until distilled from sodium before use. Peroxides can also be removed by wetting the ether with a little water, then adding excess LiAlH4 or CaH2 and leaving to stand for several hours. (This also dried the ether.) Werner [Analyst 58 335 1933] removed peroxides and aldehydes by adding 8g AgNO3 in 60mL of water to 1L of ether, then 100mL of 4% NaOH and shaking for 6minutes. Fierz-David [Chimia 1 246 1947] shook 1L of ether with 10g of a zinc-copper couple. (This reagent is prepared by suspending zinc dust in 50mL of hot water, adding 5mL of 2M HCl and decanting after 20seconds, washing twice with water, covering with 50mL of water and 5mL of 5% cuprous sulfate with swirling. The liquid is decanted and discarded, and the residue is washed three times with 20mL of ethanol and twice with 20mL of diethyl ether). Aldehydes can be removed from diethyl ether by distillation from hydrazine hydrogen sulfate, phenyl hydrazine or thiosemicarbazide. Peroxides and oxidisable impurities have also been removed by shaking with strongly alkaline-saturated KMnO4 (with which the ether was left to stand in contact for 24hours), followed by washing with water, conc H2SO4, water again, then drying (CaCl2) and distillation from sodium, or sodium containing benzophenone to form the ketyl. Other purification procedures include distillation from sodium triphenylmethide or butyl magnesium bromide, and drying with solid NaOH or P2O5. [Beilstein 1 IV 1314.] Rapid purification: Same as for 1,4-dioxane.

비 호환성

May form explosive mixture with air. Incompatible with strong acids; strong oxidizers halogens, sulfur, sulfur compounds, causing fire and explosion hazard. Can form peroxides from air, heat, sunlight; may explode when container is unstoppered or otherwise opened. Attacks some plastics, rubber and coatings. Being a nonconductor, chemical may accumulate static electric charges that may result in ignition of vapor.

폐기물 처리

Concentrated waste containing no peroxides-discharge liquid at a controlled rate near a pilot flame. Concentrated waste containing peroxidesperforation of a container of the waste from a safe distance followed by open burning. Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal

디에틸에테르 준비 용품 및 원자재

원자재

준비 용품


디에틸에테르 공급 업체

글로벌( 0)공급 업체
공급자 전화 팩스 이메일 국가 제품 수 이점

디에틸에테르 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved