ChemicalBook
Chinese english Germany Japanese Korea

Acetonitril Produkt Beschreibung

Acetonitrile  Struktur
75-05-8
CAS-Nr.
75-05-8
Bezeichnung:
Acetonitril
Englisch Name:
Acetonitrile
Synonyma:
AN;ACN;AN2;MGDA;CH3CN;48484;ACY1L;NA 1648;C18orf14;CCDC102B
CBNumber:
CB2127174
Summenformel:
C2H3N
Molgewicht:
41.05
MOL-Datei:
75-05-8.mol

Acetonitril Eigenschaften

Schmelzpunkt:
−48 °C(lit.)
Siedepunkt:
81-82 °C(lit.)
Dichte
0.982 g/mL at 20 °C
Dampfdichte
1.41 (vs air)
Dampfdruck
72.8 mm Hg ( 20 °C)
Brechungsindex
n20/D 1.344(lit.)
Flammpunkt:
48 °F
storage temp. 
2-8°C
Löslichkeit
organic solvents: soluble(lit.)
pka
25(at 25℃)
Aggregatzustand
liquid
Farbe
<10(APHA)
Wichte
approximate 0.78(20/20℃)
Geruch (Odor)
Aromatic ether-like odor detectable at 40 ppm
Relative polarity
0.46
Explosionsgrenze
3.0-17%(V)
Wasserlöslichkeit
miscible
maximale Wellenlänge (λmax)
λ: 195 nm Amax: ≤0.12
λ: 200 nm Amax: ≤0.032
λ: 230 nm Amax: ≤0.0044
λ: 235 nm Amax: ≤0.0044
λ: 250 nm Amax: ≤0.0044
λ: 400 nm Amax: ≤0.0044
Merck 
14,70
BRN 
741857
Henry's Law Constant
7.30 at 5 °C, 8.90 at 10 °C, 11.6 at 15 °C, 14.6 at 20 °C, 17.6 at 25 °C (headspace-GC, Ji and Evans, 2007)
Expositionsgrenzwerte
TLV-TWA 70 mg/m3 (40 ppm) (ACGIH and OSHA); STEL 105 mg/m3 (60 ppm) (ACGIH); IDLH 4000 ppm (NIOSH).
Stabilität:
Stability Unstable. Incompatible with alkali metals, acids, bases, reducing agents and oxidizing agents. Highly flammable.
CAS Datenbank
75-05-8(CAS DataBase Reference)
NIST chemische Informationen
Acetonitrile(75-05-8)
EPA chemische Informationen
Acetonitrile(75-05-8)
Sicherheit
  • Risiko- und Sicherheitserklärung
  • Gefahreninformationscode (GHS)
Kennzeichnung gefährlicher F,Xi,Xn,T
R-Sätze: 11-36-20/21/22-10-36/37/38-23/24/25-41-24-20/22
S-Sätze: 16-36/37-45-36/37/39-27-26-36
RIDADR  UN 1993 3/PG 3
WGK Germany  2
RTECS-Nr. AL7700000
9
Selbstentzündungstemperatur 524 °C
Hazard Note  Highly Flammable/Harmful/Irritant
TSCA  Yes
HazardClass  3
PackingGroup  II
HS Code  29269095
Giftige Stoffe Daten 75-05-8(Hazardous Substances Data)
Toxizität LD50 orally in rats: 3800 mg/kg (Smyth)
Bildanzeige (GHS)
Alarmwort Achtung
Gefahrenhinweise
Code Gefahrenhinweise Gefahrenklasse Abteilung Alarmwort Symbol P-Code
H225 Flüssigkeit und Dampf leicht entzündbar. Entzündbare Flüssigkeiten Kategorie 2 Achtung P210,P233, P240, P241, P242, P243,P280, P303+ P361+P353, P370+P378,P403+P235, P501
H302 Gesundheitsschädlich bei Verschlucken. Akute Toxizität oral Kategorie 4 Warnung P264, P270, P301+P312, P330, P501
H311 Giftig bei Hautkontakt. Akute Toxizität dermal Kategorie 3 Achtung P280, P302+P352, P312, P322, P361,P363, P405, P501
H312 Gesundheitsschädlich bei Hautkontakt. Akute Toxizität dermal Kategorie 4 Warnung P280,P302+P352, P312, P322, P363,P501
H319 Verursacht schwere Augenreizung. Schwere Augenreizung Kategorie 2 Warnung P264, P280, P305+P351+P338,P337+P313P
H332 Gesundheitsschädlich bei Einatmen. Akute Toxizität inhalativ Kategorie 4 Warnung P261, P271, P304+P340, P312
H336 Kann Schläfrigkeit und Benommenheit verursachen. Spezifische Zielorgan-Toxizität (einmalige Exposition) Kategorie 3 (Schläfrigkeit und Benommenheit) Warnung P261, P271, P304+P340, P312,P403+P233, P405, P501
H341 Kann vermutlich genetische Defekte verursachen. Keimzellmutagenität Kategorie 2 Warnung P201,P202, P281, P308+P313, P405,P501
H370 Schädigt die Organe. Spezifische Zielorgan-Toxizität (einmalige Exposition) Kategorie 1 Achtung P260, P264, P270, P307+P311, P321,P405, P501
H373 Kann die Organe schädigen bei längerer oder wiederholter Exposition. Spezifische Zielorgan-Toxizität (wiederholte Exposition) Kategorie 2 Warnung P260, P314, P501
Sicherheit
P201 Vor Gebrauch besondere Anweisungen einholen.
P202 Vor Gebrauch alle Sicherheitshinweise lesen und verstehen.
P233 Behälter dicht verschlossen halten.
P240 Behälter und zu befüllende Anlage erden.
P260 Dampf/Aerosol/Nebel nicht einatmen.
P264 Nach Gebrauch gründlich waschen.
P264 Nach Gebrauch gründlich waschen.
P270 Bei Gebrauch nicht essen, trinken oder rauchen.
P271 Nur im Freien oder in gut belüfteten Räumen verwenden.

Acetonitril Chemische Eigenschaften,Einsatz,Produktion Methoden

ERSCHEINUNGSBILD

FARBLOSE FLüSSIGKEIT MIT CHARAKTERISTISCHEM GERUCH.

PHYSIKALISCHE GEFAHREN

Die Dämpfe mischen sich leicht mit Luft. Bildung explosionsfähiger Gemische.

CHEMISCHE GEFAHREN

Zersetzung beim Verbrennen unter Bildung giftiger Rauche mit Cyanwasserstoffund Stickstoffoxiden. Reagiert mitwasserhaltigen Säurenund Basen unter Bildung giftiger Rauche. Reagiert mit starken Oxidationsmitteln. Feuer- und Explosionsgefahr. Greift einige Kunststoff-, Gummi- und Beschichtungsarten an.

ARBEITSPLATZGRENZWERTE

TLV: 20 ppm (als TWA) Hautresorption Krebskategorie A4 (nicht klassifizierbar als krebserzeugend für den Menschen); (ACGIH 2005).
MAK: 20 ppm 34 mg/m?Spitzenbegrenzung: überschreitungsfaktor II(2); Hautresorption; Schwangerschaft: Gruppe C; (DFG 2005).
EG Arbeitsplatz-Richtgrenzwerte: 70 mg/m? 40 ppm (als TWA); Hautresorption; (EG 2006)

AUFNAHMEWEGE

Aufnahme in den Körper durch Inhalation der Dämpfe, über die Haut und durch Verschlucken.

INHALATIONSGEFAHREN

Beim Verdampfen bei 20 °C kann schnell eine gesundheitsschädliche Kontamination der Luft eintreten.

WIRKUNGEN BEI KURZZEITEXPOSITION

WIRKUNGEN BEI KURZZEITEXPOSITION:
Die Substanz reizt die Augen, die Haut und die Atmungsorgane. Möglich sind Auswirkungen auf die Zellatmung (Hemmung) mit nachfolgenden Krämpfenund Atemversagen. Exposition weit über den Arbeitsplatzgrenzwerten kann zum Tod führen. Die Auswirkungen treten u.U. verzögert ein. ärztliche Beobachtung notwendig.

LECKAGE

Belüftung. Zündquellen entfernen. Ausgelaufene Flüssigkeit in abdichtbaren Behältern sammeln. Reste mit trockenem Sand oder inertem Absorptionsmittel aufnehmen und an einen sicheren Ort bringen. NICHT in die Kanalisation spülen. Persönliche Schutzausrüstung: Vollschutzanzug mit umgebungsluftunabhängigem Atemschutzgerät.

R-Sätze Betriebsanweisung:

R11:Leichtentzündlich.
R36:Reizt die Augen.
R20/21/22:Gesundheitsschädlich beim Einatmen,Verschlucken und Berührung mit der Haut.
R10:Entzündlich.
R36/37/38:Reizt die Augen, die Atmungsorgane und die Haut.
R23/24/25:Giftig beim Einatmen, Verschlucken und Berührung mit der Haut.
R41:Gefahr ernster Augenschäden.
R24:Giftig bei Berührung mit der Haut.
R20/22:Gesundheitsschädlich beim Einatmen und Verschlucken.

S-Sätze Betriebsanweisung:

S16:Von Zündquellen fernhalten - Nicht rauchen.
S36/37:Bei der Arbeit geeignete Schutzhandschuhe und Schutzkleidung tragen.
S45:Bei Unfall oder Unwohlsein sofort Arzt zuziehen (wenn möglich, dieses Etikett vorzeigen).
S36/37/39:Bei der Arbeit geeignete Schutzkleidung,Schutzhandschuhe und Schutzbrille/Gesichtsschutz tragen.
S27:Beschmutzte, getränkte Kleidung sofort ausziehen.
S26:Bei Berührung mit den Augen sofort gründlich mit Wasser abspülen und Arzt konsultieren.
S36:DE: Bei der Arbeit geeignete Schutzkleidung tragen.

Aussehen Eigenschaften

CH3CN, Ethannitril, Methylcyanid.

Gefahren für Mensch und Umwelt

Gefährliche Reaktionen mit Oxidationsmitteln (u.a. Perchloraten, Perchlorsäure, Salpetersäure, Oleum), Säuren( u.a. konz. Schwefelsäure), Cyanopropylnitrat, in dampf-/gasförmigen Zustand mit Wasser, explosionsfähig in dampf-/gasförmigen Zustand mit Luft.
Verschlucken führt zu Übelkeit und Erbrechen. Nach Resorption großer Mengen, die auch über die Haut möglich ist, erfolgt im Körper eine relativ langsame Abspaltung von Blausäure aus der Verbindung. Unter diesen Umständen kann es zu Atemnot und innerer Erstickung kommen. Giftig beim Einatmen,Verschlucken und Berührung mit der Haut.
Giftwirkung auf Fische und Plankton. Trinkwassergefährdend bereits bei Auslaufen geringer Mengen in den Untergrund.

Schutzmaßnahmen und Verhaltensregeln

Lagerung: dicht verschlossen, kühl, an gut belüfteten Ort, von Zündquellen entfernt, nicht in die Nähe von brennbaren Stoffen. Maßnahmen gegen elektrostatische Aufladung treffen.
bei Auftreten von Dämpfen/Aerosolen. Filter A
Laborschutzbrille
Berührung mit der Haut vermeiden

Verhalten im Gefahrfall

Mit Rotisorb aufnehmen. Der Entsorgung zuführen. Mit Wasser nachreinigen
Wasserstrahl, Schaum, Kohlendioxid, Pulver

Erste Hilfe

Nach Hautkontakt: Mit reichlich Wasser abwaschen.
Nach Augenkontakt: 15 Minuten bei gespreizten Lidern unter fließendem Wasser mit Augendusche ausspülen. Augenarzt konsultieren!
Nach Einatmen: Frischluft, ggf. Atemspende oder Gerätebeatmung.
Nach Verschlucken: Sofort Kochsalzlösung (1 Eßl./Glas) trinken und erbrechen lassen!
Bei Unwohlsein ärztlichen Rat einholen.
Ersthelfer: siehe gesonderten Anschlag

Sachgerechte Entsorgung

Als Sonderabfall (halogenfreies Lösungsmittelgemisch) entsorgen, zuständige Stellen: Hubland-Herr Riepl:8884711, Klinikum-Herr Uhl:2015557.

Chemische Eigenschaften

Acetonitrile is a colorless liquid with an ether-like odor and a polar solvent. It is the simplest organic nitrile and is widely used. It is a by-product of the manufacture of acrylonitrile, and acetonitrile has, in fact, replaced acrylonitrile. It is used as a starting material for the produc- tion of acetophenone, alpha-naphthalenacetic acid, thiamine, and acetamidine. It has been used as a solvent and in making pesticides, pharmaceuticals, batteries, and rubber products, and formulations for nail polish remover, despite its low but signifi cant toxicity. Acetonitrile has been banned in cosmetic products in the European Economic Area (EEA) since early 2000 and acetone and ethyl are often preferred as safer for domestic use. Acetonitrile has a number of uses, primarily as an extraction solvent for butadiene; as a chemical interme- diate in pesticide manufacturing; as a solvent for both inorganic and organic compounds; to remove tars, phenols, and coloring matter from petroleum hydrocarbons not soluble in acetonitrile; in the production of acrylic fi bers; in pharmaceuticals, perfumes, nitrile rubber, and acrylonitrile-butadiene-styrene (ABS) resins; in high-performance liquid and gas chro- matographic analysis; and in extraction and refi ning of copper.

Physikalische Eigenschaften

Colorless liquid with an ether-like or pungent odor of vinegar. A detection odor threshold concentration of 1,950 mg/m3 (1,161 ppmv) was experimentally determined by Dravnieks (1974). An odor threshold concentration of 13 ppmv was reported by Nagata and Takeuchi (1990).

Verwenden

Acetonitrile is used as a solvent for polymers, spinning fibers, casting and molding plastics, and HPLC analyses; for extraction of butadiene and other olefins from hydrocarbon streams; in dyeing and coating textiles; and as a stabilizer for chlorinated solvents. It occurs in coal tar and forms as a by-product when acrylonitrile is made.

Verwenden

In organic synthesis as starting material for acetophenone, a-naphthaleneacetic acid, thiamine, acetamidine. To remove tars, phenols, and coloring matter from petroleum hydrocarbons which are not soluble in acetonitrile. To extract fatty acids from fish liver oils and other animal and vegetable oils. Can be used to recrystallize steroids. As an indifferent medium in physicochemical investigations. Wherever a polar solvent having a rather high dielectric constant is required. As medium for promoting reactions involving ionization. As a solvent in non-aqueous titrations. As a non-aqueous solvent for inorganic salts.

Vorbereitung Methode

Acetonitrile is mainly prepared by dehydration of acetamide (CH3CONH2) with glacial acetic acid (Turner 1950) or by reacting acetic acid with ammonia at 400-500°C in the presence of a dehydration catalyst (Anon 1978).

Allgemeine Beschreibung

A colorless limpid liquid with an aromatic odor. Flash point 42°F. Density 0.783 c / cm3. Toxic by skin absorption. Less dense than water. Vapors are denser than air.

Air & Water Reaktionen

Highly flammable. Water soluble.

Reaktivität anzeigen

Acetonitrile decomposes when heated to produce deadly toxic hydrogen cyanide gas and oxides of nitrogen. Strongly reactive [Hawley]. May react vigorously with strong oxidizing reagents, sulfuric acid, chlorosulfonic acid, sulfur trioxide, perchlorates, nitrating reagents, and nitric acid. [Sax, 9th ed., 1996, p. 20]. Potentially explosive in contact with nitrogen-fluorine compounds (e.g., tetrafluorourea) [Fraser, G. W. et al., Chem. Comm., 1966, p. 532].

Health Hazard

Acetonitrile liquid or vapor is irritating to the skin, eyes, and respiratory tract. Acetonitrile has only a modest toxicity, but it can be metabolized in the body to hydrogen cyanide and thiocyanate. Acetonitrile causes delayed symptoms of poisoning (several hours after the exposure) that include, but are not limited to, salivation, nausea, vomiting, anxiety, confusion, hyperpnea, dyspnea, respiratory distress, disturbed pulse rate, unconscious- ness, convulsions, and coma. Cases of acetonitrile poisoning in humans (or, more strictly, of cyanide poisoning after exposure to acetonitrile) are rare but not unknown, by inha- lation, ingestion, and (possibly) by skin absorption. Repeated exposure to acetonitrile may cause headache, anorexia, dizziness, weakness, and macular, papular, or vesicular dermatitis.

Health Hazard

The toxicity of acetonitrile to human and test animals is considerably lower than that of some other nitriles. However, at high concentrations, this compound could produce severe adverse effects. The target organs are the kidney, liver, central nervous system, lungs, cardiovascular system, skin, and eyes. In humans, inhalation of its vapors can cause asphyxia, nausea, vomiting, and tightness of the chest. Such effects can probably be manifested at several hours exposure to concentration in air above 400–500 ppm. At a lower concentration of 100 ppm, only a slight adverse effect may be noted. It is excreted in the urine as cyanate. The blood cyanide concentration does not show any significant increase in cyanide at low concentrations.
The acute oral toxicity of acetonitrile is generally of low order. The toxic symptoms associated with oral intake can be gastrointestinal pain, nausea, vomiting, stupor, convulsion, and weakness. These effects may become highly marked in humans from ingestion of 40–50 mL of acetonitrile. Freeman and Hayes (1985) observed toxicological interaction between acetone and acetonitrile when administered in rats by oral dose. There was a delay in the onset of toxicity (due to acetonitrile) and an elevation of blood cyanide concentration when the dose consisted of a mixture of acetone and acetonitrile. Acetone inhibited the cyanide formation. The toxicity of both the solvents were prevented by administering sodium thiosulfate. Sodium nitrite also provided protection against mortality from lethal concentrations (Willhite 1981). Intraperitoneal administration of acetonitrile resulted in damage to cornea, ataxia, and dyspnea in mice. It is an eye and skin irritant.
LD50 value, oral (mice): 269 mg/kg
LD50 value, intraperitoneal (mice): 175 mg/kg
Ahmed et al. (1992) studied kinetics of acetonitrile distribution in mice by autoradiography. The study revealed heavy localization of acetonitrile metabolites in the gastrointestinal tissues and bile. Initially, the highest levels of radioactivity were detected in the liver and kidney which declined over time. At 24- and 48 hours after exposure the radioactivity was detected in gastrointestine, thymus, liver, and male reproductive organs. The study also indicated that 40 to 50% of total radioactivity was present in the liver, covalently bound to the macromolecular fractions of the tissues while the remaining radioactivity in the other organs were present in the lipid fraction of the tissue.
Acetonitrile is a teratomer. Pregnant hamsters were exposed to this compound by inhalation, ingestion, or injection during the early stage of embryogenesis. Severe axial skeletal disorders resulted in the offspring at a high concentration of 5000–8000 ppm (inhalation) or 100–400 mg/kg (oral dose) (Willhite 1983). Teratogenic effects were attributed to the release of cyanide, which was detected in high concentrations along with thiocyanate in all tissues after an oral or intraperitoneal dose. Sodium thiosulfatetreated hamsters did not display a teratogenic response to acetonitrile.
A 2-year inhalation studies (NTP 1996) showed a marginally increased incidence of hepatocellular adenoma and carcinoma in male rats exposed to 100, 200, or 400 ppm acetonitrile for 6 hours per day, 5 days per week. However, there was no incidence of carcinogenic activity in female rats and male and female mice.

Brandgefahr

Flammable liquid; flash point (open cup) 5.5°C (42°F); vapor pressure 73 torr at 20°C (68°F); vapor density at 38°C (100°F) 1.1 (air = 1); the vapor is heavier than air and can travel some distance to a source of ignition and flash back; ignition temperature 524°C (975°F); fire-extinguishing agent: dry chemical, CO2, or “alcohol” foam; use a water spray to flush and dilute the spill and keep fire-exposed containers cool.
Muraki et al. (2001) have reported a case of systemic rhabdomyolysis and acute renal failure in a 35-year old man after acetonitrile exposure. The symptoms were vomiting, convulsion, and loss of consciousness 15 hours after exposure. Initial therapy against cyanide poisoning was only partially effective.
Acetonitrile vapors form an explosive mixture with air; the LEL and UEL values are 4.4% and 16.0% by volume of air, respectively. It reacts with strong oxidizers and acids, liberating heat along with pressure increase. Thus contact in a close container can result in rupture of the container. Erbium perchlorate tetrasolvated with acetonitrile when dried to disolvate exploded violently on light friction (Wolsey 1973). Neodymium perchlorate showed similar heat and shock sensitivity when dried down to lower levels of solvation (Chemical & Engineering News, Dec. 5, 1983). Bretherick (1990) proposed that the tendency for oxygen balance to shift toward zero for maximum energy release, with diminishing solvent content, decreased the stability of solvated metal perchlorates at lower levels of solvation. Such a zero balance for maximum exotherm should occur at 2.18 mol of acetonitrile solvated to metal perchlorate. Metals such as lithium react exothermically with acetonitrile at ambient temperature (Dey and Holmes 1979).

Flammability and Explosibility

Acetonitrile is a flammable liquid (NFPA rating = 3), and its vapor can travel a considerable distance to an ignition source and "flash back." Acetonitrile vapor forms explosive mixtures with air at concentrations of 4 to 16% (by volume).
Hazardous gases produced in a fire include hydrogen cyanide, carbon monoxide, carbon dioxide, and oxides of nitrogen. Carbon dioxide or dry chemical extinguishers should be used for acetonitrile fires.

Industrielle Verwendung

Acetonitrile is used as a solvent both in industry and in the laboratory, as a rodenticide, and in the denaturation of alcohol. Because of both its solvent properties and volatility, it is useful for extracting vegetable and animal oils and dissolving hydrocarbons, oils, and greases. Acetonitrile is used for the purification of acetylene and artificial textile fibers, and as an antioxidant for rubber (Dequidt et al 1974). It has also been used to extract herbicide residues from soils (Smith 1980), to remove tars and other compounds from petroleum hydrocarbons, and to extract fatty acids from vegetable and fish liver oil. Acetonitrile is now a standard solvent component in reversed-phase high-performance liquid chromatography. It is the starting point for the syntheses of a number of organic compounds such as carboxylic acids and various nitrogen derivatives (Smiley 1981).

Sicherheitsprofil

Poison by ingestion and intraperitoneal routes. Moderately toxic by several routes. An experimental teratogen. Other experimental reproductive effects. A skin and severe eye irritant. Human systemic effects by ingestion: convulsions, nausea or vomiting, and metabolic acidosis. Human respiratory system effects by inhalation. Mutation data reported. Dangerous fire hazard when exposed to heat, flame, or oxidizers. Explosion Hazard: See also CYANIDE and NITRILES. When heated to decomposition it emits highly toxic fumes of CNand NOx,. Potentially explosive reaction with lanthanide perchlorates and nitrogen-fluorine compounds. Exothermic reaction with sulfuric acid at 53°C. Will react with water, steam, acids to produce toxic and flammable vapors. Incompatible with oleum, chlorosulfonic acid, perchlorates, nitrating agents, inchum, dinitrogen tetraoxide, N-fluoro compounds (e.g., perfluorourea + acetonitrile), HNO3, so3. To fight fire, use foam, Con, dry chemical

mögliche Exposition

Acetonitrile is used as an extractant for animal and vegetable oils, as a solvent; particularly in the pharmaceutical industry, and as a chemical intermediate in pesticide manufacture; making batteries and rubber products. It is present in cigarette smoke

Environmental Fate

Biological. Resting cell suspensions of the soil methylotroph Methylosinus trichosporium OB- 3b rapidly metabolized acetonitrile via oxygen insertion into the C-H bond generating the intermediate formaldehyde cyanohydrin. The latter compound loses hydrogen cyanide yielding formaldehyde which is then oxidized to formate (HCO2H) and bicarbonate ion (Castro et al., 1996).
Photolytic. A rate constant of 4.94 x 10-14 cm3/molecule?sec at 24 °C was reported for the vaporphase reaction of acetonitrile and OH radicals in air (Harris et al., 1981). Reported rate constants for the reaction of acetonitrile and OH radicals in the atmosphere and in water are 1.90 x 10-14 and 3.70 x 10-14 cm3/molecule?sec, respectively (Kurylo and Knable, 1984). The estimated lifetime of acetonitrile in the atmosphere is estimated to range from 6 to 17 months (Arijs and Brasseur, 1986).
Chemical/Physical. The estimated hydrolysis half-life of acetonitrile at 25 °C and pH 7 is >150,000 yr (Ellington et al., 1988). No measurable hydrolysis was observed at 85 °C at pH values 3.26 and 6.99. At 66.0 °C (pH 10.42) and 85.5 °C (pH 10.13), the hydrolysis half-lives based on first-order rate constants were 32.2 and 5.5 d, respectively (Ellington et al., 1987). The presence of hydroxide or hydronium ions facilitates hydrolysis transforming acetonitrile to the intermediate acetamide which undergoes hydrolysis forming acetic acid and ammonia (Kollig, 1993). Acetic acid and ammonia formed react quickly forming ammonium acetate. At an influent concentration of 1,000 mg/L, treatment with GAC resulted in an effluent concentration of 28 mg/L. The adsorbability of the carbon used was 194 mg/g carbon (Guisti et al., 1974).
Burns with a luminous flame (Windholz et al., 1983), releasing toxic fumes of hydrogen cyanide.

Stoffwechsel

Acetonitrile metabolism in dogs was demonstrated by Lang (1894), who reported that about 20% of the nitrile administered was converted to thio-cyanate in the urine, while guinea pigs metabolized acetonitrile to a greater extent (50% of dose excreted as thiocyanate). When the animals were pre-treated with ethanol, acetonitrile metabolism was induced (Tanii and Hashimoto 1986). In rats, acetone was found to potentiate acetonitrile toxicity and elevate cyanide concentrations in the blood (Freeman and Hays 1985). Baumann et al (1933) found that rabbits injected with acetonitrile excreted 27-35% of the dose as thiocyanate, while in thyroidectomized rabbits, the excretion decreased significantly (3-5% of the dose). Thiocyanate excretion was increased notably upon feeding dessicated thyroid to these animals. Hunt (1923) found that powdered sheep thyroid protected mice against acetonitrile toxicity. However, the role played by the thyroid in the detoxication of cyanide to thiocyanate is unclear. It has been suggested that the thyroid may have a role in the microsomal cleavage of cyanide from acetonitrile other than its direct effect on sulphation of cyanide to thiocyanate.
The nature of oxidizing enzymes for nitriles in general, including acetonitrile have been studied by Ahmed and Patel (1979). The enzymes were localized in the hepatic microsomal fraction and required NADPH as a cofactor in the presence of oxygen. In recent studies on the mammalian metabolism of acetonitrile, the mechanisms of cyanide liberation, and the enzymes involved, have also been reported by Tanii and Hashimoto (1984, 1986) and Freeman and Hays (1988). These studies confirmed the role of microsomal mixed function oxidase in the metabolism of acetonitrile.
Firmin and Gray (1976) studied the fate of acetonitrile in the bacterium Pseudomonas. They found that [14C]-acetonitrile is metabolized to citrate, succinate, fumarate, malate, glutamate, pyrrolidonecarboxylic acid, and asparate. They reported that this species of bacteria metabolized acetonitrile by direct hydrolysis of the cyanide moiety to acetamide. Although it is possible that a similar reaction may occur in mammalian systems, it has not yet been reported.

Lager

Acetonitrile should be used only in areas free of ignition sources, and quantities greater than 1 liter should be stored in tightly sealed metal containers in areas separate from oxidizers.

Versand/Shipping

UN1648 Acetonitrile, Hazard Class: 3; Labels: 3-Flammable liquid

läuterung methode

Commercial acetonitrile is a by-product of the reaction of propylene and ammonia to acrylonitrile. The following procedure that significantly reduces the levels of acrylonitrile, allyl alcohol, acetone and *benzene was used by Kiesel [Anal Chem 52 2230 1988]. Methanol (300mL) is added to 3L of acetonitrile fractionated at high reflux ratio until the boiling temperature rises from 64o to 80o, and the distillate becomes optically clear down to = 240nm. Add sodium hydride (1g) free from paraffin, to the liquid, reflux for 10minutes, and then distil rapidly until about 100mL of residue remains. Immediately pass the distillate through a column of acidic alumina, discarding the first 150mL of percolate. Add 5g of CaH2 and distil the first 50mL at a high reflux ratio. Discard this fraction, and collect the following main fraction. The best way of detecting impurities is by gas chromatography. Usual contaminants in commercial acetonitrile include H2O, acetamide, NH4OAc and NH3. Anhydrous CaSO4 and CaCl2 are inefficient drying agents. Preliminary treatment of acetonitrile with cold, saturated aqueous KOH is undesirable because of base-catalysed hydrolysis and the introduction of water. Drying by shaking with silica gel or Linde 4A molecular sieves removes most of the water in acetonitrile. Subsequent stirring with CaH2 until no further hydrogen is evolved leaves only traces of water and removes acetic acid. The acetonitrile is then fractionally distilled at high reflux, taking precaution to exclude moisture by refluxing over CaH2 [Coetzee Pure Appl Chem 13 429 1966]. Alternatively, 0.5-1% (w/v) P2O5 is often added to the distilling flask to remove most of the remaining water. Excess P2O5 should be avoided because it leads to the formation of an orange polymer. Traces of P2O5 can be removed by distilling from anhydrous K2CO3. Kolthoff, Bruckenstein and Chantooni [J Am Chem Soc 83 3297 1961] removed acetic acid from 3L of acetonitrile by shaking for 24hours with 200g of freshly activated alumina (which had been reactivated by heating at 250o for 4hours). The decanted solvent was again shaken with activated alumina, followed by five batches of 100-150g of anhydrous CaCl2. (Water content of the solvent was then less than 0.2%.) It was shaken for 1hour with 10g of P2O5, twice, and distilled in a 1m x 2cm column, packed with stainless steel wool and protected from atmospheric moisture by CaCl2 tubes. The middle fraction had a water content of 0.7 to 2mM. Traces of unsaturated nitriles can be removed by initially refluxing with a small amount of aqueous KOH (1mL of 1% solution per L). Acetonitrile can be dried by azeotropic distillation with dichloromethane, *benzene or trichloroethylene. Isonitrile impurities can be removed by treatment with conc HCl until the odour of isonitrile has gone, followed by drying with K2CO3 and distilling. Acetonitrile is refluxed with, and distilled from alkaline KMnO4 and KHSO4, followed by fractional distillation from CaH2. (This is better than fractionation from molecular sieves or passage through a type H activated alumina column, or refluxing with KBH4 for 24hours and fractional distillation)[Bell et al. J Chem Soc, Faraday Trans 1 73 315 1977, Moore et al. J Am Chem Soc 108 2257 1986]. Material suitable for polarography is obtained by refluxing over anhydrous AlCl3 (15g/L) for 1hour, distilling, refluxing over Li2CO3 (10g/L) for 1hour and redistilling. It is then refluxed over CaH2 (2g/L) for 1hour and fractionally distilled, retaining the middle portion. The product is not suitable for UV spectroscopy use. A better purification procedure uses refluxing over anhydrous AlCl3 (15g/L) for 1hour, distilling, refluxing over alkaline KMnO4 (10g KMnO4, 10g Li2CO3/L) for 15minutes, and distilling. A further reflux for 1hour over KHSO4 (15g/L), then distillation, is followed by refluxing over CaH2 (2g/L) for 1hour, and fractional distillation. The product is protected from atmospheric moisture and stored under ni

Inkompatibilitäten

Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, chlorosulfonic acid, oleum, epoxides. May accumulate static electrical charges, and may cause ignition of its vapors. Nitriles may polymerize in the presence of metals and some metal compounds. They are incompatible with acids; mixing nitriles with strong oxidizing acids can lead to extremely violent reactions. Nitriles are generally incompatible with other oxidizing agents such as peroxides and epoxides. The combination of bases and nitriles can produce hydrogen cyanide. Nitriles are hydrolyzed in both aqueous acid and base to give carboxylic acids (or salts of carboxylic acids). These reactions generate heat. Peroxides convert nitriles to amides. Nitriles can react vigorously with reducing agents. Acetonitrile and propionitrile are soluble in water, but nitriles higher than propionitrile have low aqueous solubility. They are also insoluble in aqueous acids

Waste disposal

Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal. Incineration with nitrogen oxide removal from effluent gases by scrubbers or incinerators

Acetonitril Upstream-Materialien And Downstream Produkte

Upstream-Materialien

Downstream Produkte


Acetonitril Anbieter Lieferant Produzent Hersteller Vertrieb Händler.

Global( 359)Lieferanten
Firmenname Telefon Fax E-Mail Land Produktkatalog Edge Rate
Anhui Royal Chemical Co., Ltd.
+86-025-86736275
dana.jiang@royal-chem.com CHINA 488 55
Henan Tianfu Chemical Co.,Ltd.
0371-55170693
0371-55170693 info@tianfuchem.com CHINA 20676 55
Shanghai Time Chemicals CO., Ltd.
+86-021-57951555
+86-021-57951555 jack.li@time-chemicals.com CHINA 1367 55
Mainchem Co., Ltd.
+86-0592-6210733
+86-0592-6210733 sales@mainchem.com CHINA 32452 55
Xiamen AmoyChem Co., Ltd
+86 (0)592-605 1114
sales@amoychem.com CHINA 6374 58
Henan Xiangtong Chemical Co., Ltd.
86-371-61312303
86-371-86017988 xtchem2019@gmail.com CHINA 201 58
career henan chemical co
+86-371-86658258
sales@coreychem.com CHINA 25796 58
Hubei Jusheng Technology Co.,Ltd.
86-188-71490254
peter@hubeijusheng.com CHINA 20084 58
Haihang Industry Co.,Ltd
86-531-88032799
+86 531 8582 1093 export@haihangchem.com CHINA 8266 58
hdzhl biotechnology co., ltd
86-13032617415
sales@luchibiology.com CHINA 832 58

75-05-8(Acetonitril)Verwandte Suche:


  • MOBILE PHASE ACETONITRILE
  • R5, ACETONITRILE
  • S4B, ACETONITRILE
  • SOLVENT B, ACETONITRILE
  • Acetonitril
  • acetonitril(german,dutch)
  • CH3CN
  • Cyanomethan
  • cyano-methan
  • Cyanure de methyl
  • cyanuredemethyl
  • cyanuredemethyl(french)
  • cyanuredemethyle
  • Ethanemitrile
  • Ethanonitrile
  • Methane, cyano-
  • Methane,cyano-
  • Methanecarbonitrile
  • Methylcyanid
  • Methylcyanide(MeCN)
  • Methylkyanid
  • methylnitrile
  • NA 1648
  • NCI-C60822
  • Rcra waste number U003
  • rcrawastenumberu003
  • USAF ek-488
  • usafek-488
  • METHYL CYANIDE
  • CYANOMETHANE
  • ETHYL NITRILE
  • ETHANENITRILE
  • AUTONITRITE
  • ACETONITRILE-190
  • ACETONITRILE-212
  • ACETONITRILE-H8
  • ACETONITRILE METHYL CYANIDE
  • ACETONITRILE/TFA
  • ACETONITRILE 300
  • ACETONITRILE 5000
  • ACN
  • AN
  • AKOS BBS-00004274
  • ACETONITRILE FOR RESIDUE ANALYSIS
  • ACETONITRILE GRADIENT SPECIAL FOR HPLC
  • ACETONITRILE MAX. 0,001% WATER, FOR SYNT
  • ACETONITRILE, REAGENTPLUS, 99%
  • ACETONITRILE : WATER 56 : 44 % (V/V)
  • ACETONITRILE PURIFICATION GRADE 99.8%
  • ACETONITRILE R CHROMASOLV FOR LIQUIDCHRO MATOGRAPHY
  • Acetonitrile solution, contains 0.05%(v/v) acetic acid
  • ACETONITRILE CHROMASOLV FOR HPLC GR&
  • ACETONITRILE DIST. 254 UV 5 L
  • ACETONITRILE DIST. 254 UV 25 L
  • ACETONITRILE, FOR PROTEIN SEQUENCEANALYS IS, 40 ML
  • ACETONITRILE R. G., REAG. ACS, REAG._PH. EUR.
  • ACETONITRILE, ACS
  • ACETONITRILE, GRADIENT SPECIAL FOR HPLC 7 L
Copyright 2019 © ChemicalBook. All rights reserved