Chinese English Japanese Germany Korea


아세토나이트릴 구조식 이미지
카스 번호:
AN;ACN;AN2;MGDA;CH3CN;48484;ACY1L;NA 1648;C18orf14;CCDC102B
포뮬러 무게:
MOL 파일:

아세토나이트릴 속성

−48 °C(lit.)
끓는 점
81-82 °C(lit.)
0.78 g/cm3 at 20 °C
증기 밀도
1.41 (vs air)
72.8 mm Hg ( 20 °C)
n20/D 1.344(lit.)
48 °F
저장 조건
organic solvents: soluble(lit.)
산도 계수 (pKa)
25(at 25℃)
물리적 상태
Specific Gravity
approximate 0.78(20/20℃)
Aromatic ether-like odor detectable at 40 ppm
최대 파장(λmax)
λ: 195 nm Amax: ≤0.12
λ: 200 nm Amax: ≤0.032
λ: 230 nm Amax: ≤0.0044
λ: 235 nm Amax: ≤0.0044
λ: 250 nm Amax: ≤0.0044
λ: 400 nm Amax: ≤0.0044
Henry's Law Constant
7.30 at 5 °C, 8.90 at 10 °C, 11.6 at 15 °C, 14.6 at 20 °C, 17.6 at 25 °C (headspace-GC, Ji and Evans, 2007)
노출 한도
TLV-TWA 70 mg/m3 (40 ppm) (ACGIH and OSHA); STEL 105 mg/m3 (60 ppm) (ACGIH); IDLH 4000 ppm (NIOSH).
Stability Unstable. Incompatible with alkali metals, acids, bases, reducing agents and oxidizing agents. Highly flammable.
CAS 데이터베이스
75-05-8(CAS DataBase Reference)
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 F,Xi,Xn,T
위험 카페고리 넘버 11-36-20/21/22-10-36/37/38-23/24/25-41-24-20/22
안전지침서 16-36/37-45-36/37/39-27-26-36
유엔번호(UN No.) UN 1993 3/PG 3
WGK 독일 2
RTECS 번호 AL7700000
F 고인화성물질 9
자연 발화 온도 524 °C
위험 참고 사항 Highly Flammable/Harmful/Irritant
위험 등급 3
포장분류 II
HS 번호 29269095
유해 물질 데이터 75-05-8(Hazardous Substances Data)
독성 LD50 orally in rats: 3800 mg/kg (Smyth)
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H225 고인화성 액체 및 증기 인화성 액체 구분 2 위험 P210,P233, P240, P241, P242, P243,P280, P303+ P361+P353, P370+P378,P403+P235, P501
H302 삼키면 유해함 급성 독성 물질 - 경구 구분 4 경고 P264, P270, P301+P312, P330, P501
H311 피부와 접촉하면 유독함 급성 독성 물질 - 경피 구분 3 위험 P280, P302+P352, P312, P322, P361,P363, P405, P501
H312 피부와 접촉하면 유해함 급성 독성 물질 - 경피 구분 4 경고 P280,P302+P352, P312, P322, P363,P501
H319 눈에 심한 자극을 일으킴 심한 눈 손상 또는 자극성 물질 구분 2A 경고 P264, P280, P305+P351+P338,P337+P313P
H332 흡입하면 유해함 급성 독성 물질 흡입 구분 4 경고 P261, P271, P304+P340, P312
H336 졸음 또는 현기증을 일으킬 수 있음 특정표적장기 독성 물질(1회 노출);마취작용 구분 3 경고 P261, P271, P304+P340, P312,P403+P233, P405, P501
H341 유전적인 결함을 일으킬 것으로 의심됨 (노출되어도 생식세포 유전독성을 일으키지 않는다는 결정적인 증거가 있는 노출경로가 있다면 노출경로 기재) 생식세포 변이원성 물질 구분 2 경고 P201,P202, P281, P308+P313, P405,P501
H370 장기(또는, 영향을 받은 알려진 모든 장기를 명시)에 손상을 일으킴(노출되어도 특정 표적장기 독성을 일으키지 않는다는 결정적인 노출경로가 있다면 노출경로를 기재) 특정 표적장기 독성 - 1회 노출 구분 1 위험 P260, P264, P270, P307+P311, P321,P405, P501
H373 장기간 또는 반복 노출되면 장기(또는, 영향을 받은 알려진 모든 장기를 명시)에 손상을 일으킬 수 있음 특정 표적장기 독성 - 반복 노출 구분 2 경고 P260, P314, P501
P201 사용 전 취급 설명서를 확보하시오.
P202 모든 안전 조치 문구를 읽고 이해하기 전에는 취급하지 마시오.
P210 열·스파크·화염·고열로부터 멀리하시오 - 금연 하시오.
P233 용기를 단단히 밀폐하시오. 용기는 환기가 잘 되는 곳에 단단히 밀폐하여 보관하시오.
P240 용기와 수용설비를 접지 및 접합시키시오.
P260 분진·흄·가스·미스트·증기·...·스프레이를 흡입하지 마시오.
P261 분진·흄·가스·미스트·증기·...·스프레이의 흡입을 피하시오.
P264 취급 후에는 손을 철저히 씻으시오.
P264 취급 후에는 손을 철저히 씻으시오.
P270 이 제품을 사용할 때에는 먹거나, 마시거나 흡연하지 마시오.
P271 옥외 또는 환기가 잘 되는 곳에서만 취급하시오.
P280 보호장갑/보호의/보안경/안면보호구를 착용하시오.
P303+P361+P353 피부(또는 머리카락)에 묻으면 오염된 모든 의복은 벗거나 제거하시오 피부를 물로 씻으시오/샤워하시오.
P305+P351+P338 눈에 묻으면 몇 분간 물로 조심해서 씻으시오. 가능하면 콘택트렌즈를 제거하시오. 계속 씻으시오.
P307+P311 노출된 경우,독성 물질 센터 또는 의사에게 전화하기
P337+P313 눈에 대한 자극이 지속되면 의학적인 조치· 조언를 구하시오.
P370+P378 화재 시 불을 끄기 위해 (Section 5. 폭발, 화재시 대처방법의 적절한 소화제)을(를) 사용하시오.
P405 밀봉하여 저장하시오.
P403+P235 환기가 잘 되는 곳에 보관하고 저온으로 유지하시오.
P501 ...에 내용물 / 용기를 폐기 하시오.

아세토나이트릴 MSDS


아세토나이트릴 C화학적 특성, 용도, 생산

화학적 성질

Acetonitrile is a colorless liquid with an ether-like odor and a polar solvent. It is the simplest organic nitrile and is widely used. It is a by-product of the manufacture of acrylonitrile, and acetonitrile has, in fact, replaced acrylonitrile. It is used as a starting material for the produc- tion of acetophenone, alpha-naphthalenacetic acid, thiamine, and acetamidine. It has been used as a solvent and in making pesticides, pharmaceuticals, batteries, and rubber products, and formulations for nail polish remover, despite its low but signifi cant toxicity. Acetonitrile has been banned in cosmetic products in the European Economic Area (EEA) since early 2000 and acetone and ethyl are often preferred as safer for domestic use. Acetonitrile has a number of uses, primarily as an extraction solvent for butadiene; as a chemical interme- diate in pesticide manufacturing; as a solvent for both inorganic and organic compounds; to remove tars, phenols, and coloring matter from petroleum hydrocarbons not soluble in acetonitrile; in the production of acrylic fi bers; in pharmaceuticals, perfumes, nitrile rubber, and acrylonitrile-butadiene-styrene (ABS) resins; in high-performance liquid and gas chro- matographic analysis; and in extraction and refi ning of copper.

물리적 성질

Colorless liquid with an ether-like or pungent odor of vinegar. A detection odor threshold concentration of 1,950 mg/m3 (1,161 ppmv) was experimentally determined by Dravnieks (1974). An odor threshold concentration of 13 ppmv was reported by Nagata and Takeuchi (1990).


Acetonitrile is used as a solvent for polymers, spinning fibers, casting and molding plastics, and HPLC analyses; for extraction of butadiene and other olefins from hydrocarbon streams; in dyeing and coating textiles; and as a stabilizer for chlorinated solvents. It occurs in coal tar and forms as a by-product when acrylonitrile is made.


In organic synthesis as starting material for acetophenone, a-naphthaleneacetic acid, thiamine, acetamidine. To remove tars, phenols, and coloring matter from petroleum hydrocarbons which are not soluble in acetonitrile. To extract fatty acids from fish liver oils and other animal and vegetable oils. Can be used to recrystallize steroids. As an indifferent medium in physicochemical investigations. Wherever a polar solvent having a rather high dielectric constant is required. As medium for promoting reactions involving ionization. As a solvent in non-aqueous titrations. As a non-aqueous solvent for inorganic salts.

생산 방법

Acetonitrile is mainly prepared by dehydration of acetamide (CH3CONH2) with glacial acetic acid (Turner 1950) or by reacting acetic acid with ammonia at 400-500°C in the presence of a dehydration catalyst (Anon 1978).

일반 설명

A colorless limpid liquid with an aromatic odor. Flash point 42°F. Density 0.783 c / cm3. Toxic by skin absorption. Less dense than water. Vapors are denser than air.

공기와 물의 반응

Highly flammable. Water soluble.

반응 프로필

Acetonitrile decomposes when heated to produce deadly toxic hydrogen cyanide gas and oxides of nitrogen. Strongly reactive [Hawley]. May react vigorously with strong oxidizing reagents, sulfuric acid, chlorosulfonic acid, sulfur trioxide, perchlorates, nitrating reagents, and nitric acid. [Sax, 9th ed., 1996, p. 20]. Potentially explosive in contact with nitrogen-fluorine compounds (e.g., tetrafluorourea) [Fraser, G. W. et al., Chem. Comm., 1966, p. 532].


Acetonitrile liquid or vapor is irritating to the skin, eyes, and respiratory tract. Acetonitrile has only a modest toxicity, but it can be metabolized in the body to hydrogen cyanide and thiocyanate. Acetonitrile causes delayed symptoms of poisoning (several hours after the exposure) that include, but are not limited to, salivation, nausea, vomiting, anxiety, confusion, hyperpnea, dyspnea, respiratory distress, disturbed pulse rate, unconscious- ness, convulsions, and coma. Cases of acetonitrile poisoning in humans (or, more strictly, of cyanide poisoning after exposure to acetonitrile) are rare but not unknown, by inha- lation, ingestion, and (possibly) by skin absorption. Repeated exposure to acetonitrile may cause headache, anorexia, dizziness, weakness, and macular, papular, or vesicular dermatitis.


The toxicity of acetonitrile to human and test animals is considerably lower than that of some other nitriles. However, at high concentrations, this compound could produce severe adverse effects. The target organs are the kidney, liver, central nervous system, lungs, cardiovascular system, skin, and eyes. In humans, inhalation of its vapors can cause asphyxia, nausea, vomiting, and tightness of the chest. Such effects can probably be manifested at several hours exposure to concentration in air above 400–500 ppm. At a lower concentration of 100 ppm, only a slight adverse effect may be noted. It is excreted in the urine as cyanate. The blood cyanide concentration does not show any significant increase in cyanide at low concentrations.
The acute oral toxicity of acetonitrile is generally of low order. The toxic symptoms associated with oral intake can be gastrointestinal pain, nausea, vomiting, stupor, convulsion, and weakness. These effects may become highly marked in humans from ingestion of 40–50 mL of acetonitrile. Freeman and Hayes (1985) observed toxicological interaction between acetone and acetonitrile when administered in rats by oral dose. There was a delay in the onset of toxicity (due to acetonitrile) and an elevation of blood cyanide concentration when the dose consisted of a mixture of acetone and acetonitrile. Acetone inhibited the cyanide formation. The toxicity of both the solvents were prevented by administering sodium thiosulfate. Sodium nitrite also provided protection against mortality from lethal concentrations (Willhite 1981). Intraperitoneal administration of acetonitrile resulted in damage to cornea, ataxia, and dyspnea in mice. It is an eye and skin irritant.
LD50 value, oral (mice): 269 mg/kg
LD50 value, intraperitoneal (mice): 175 mg/kg
Ahmed et al. (1992) studied kinetics of acetonitrile distribution in mice by autoradiography. The study revealed heavy localization of acetonitrile metabolites in the gastrointestinal tissues and bile. Initially, the highest levels of radioactivity were detected in the liver and kidney which declined over time. At 24- and 48 hours after exposure the radioactivity was detected in gastrointestine, thymus, liver, and male reproductive organs. The study also indicated that 40 to 50% of total radioactivity was present in the liver, covalently bound to the macromolecular fractions of the tissues while the remaining radioactivity in the other organs were present in the lipid fraction of the tissue.
Acetonitrile is a teratomer. Pregnant hamsters were exposed to this compound by inhalation, ingestion, or injection during the early stage of embryogenesis. Severe axial skeletal disorders resulted in the offspring at a high concentration of 5000–8000 ppm (inhalation) or 100–400 mg/kg (oral dose) (Willhite 1983). Teratogenic effects were attributed to the release of cyanide, which was detected in high concentrations along with thiocyanate in all tissues after an oral or intraperitoneal dose. Sodium thiosulfatetreated hamsters did not display a teratogenic response to acetonitrile.
A 2-year inhalation studies (NTP 1996) showed a marginally increased incidence of hepatocellular adenoma and carcinoma in male rats exposed to 100, 200, or 400 ppm acetonitrile for 6 hours per day, 5 days per week. However, there was no incidence of carcinogenic activity in female rats and male and female mice.


Flammable liquid; flash point (open cup) 5.5°C (42°F); vapor pressure 73 torr at 20°C (68°F); vapor density at 38°C (100°F) 1.1 (air = 1); the vapor is heavier than air and can travel some distance to a source of ignition and flash back; ignition temperature 524°C (975°F); fire-extinguishing agent: dry chemical, CO2, or “alcohol” foam; use a water spray to flush and dilute the spill and keep fire-exposed containers cool.
Muraki et al. (2001) have reported a case of systemic rhabdomyolysis and acute renal failure in a 35-year old man after acetonitrile exposure. The symptoms were vomiting, convulsion, and loss of consciousness 15 hours after exposure. Initial therapy against cyanide poisoning was only partially effective.
Acetonitrile vapors form an explosive mixture with air; the LEL and UEL values are 4.4% and 16.0% by volume of air, respectively. It reacts with strong oxidizers and acids, liberating heat along with pressure increase. Thus contact in a close container can result in rupture of the container. Erbium perchlorate tetrasolvated with acetonitrile when dried to disolvate exploded violently on light friction (Wolsey 1973). Neodymium perchlorate showed similar heat and shock sensitivity when dried down to lower levels of solvation (Chemical & Engineering News, Dec. 5, 1983). Bretherick (1990) proposed that the tendency for oxygen balance to shift toward zero for maximum energy release, with diminishing solvent content, decreased the stability of solvated metal perchlorates at lower levels of solvation. Such a zero balance for maximum exotherm should occur at 2.18 mol of acetonitrile solvated to metal perchlorate. Metals such as lithium react exothermically with acetonitrile at ambient temperature (Dey and Holmes 1979).

인화성 및 폭발성

Acetonitrile is a flammable liquid (NFPA rating = 3), and its vapor can travel a considerable distance to an ignition source and "flash back." Acetonitrile vapor forms explosive mixtures with air at concentrations of 4 to 16% (by volume).
Hazardous gases produced in a fire include hydrogen cyanide, carbon monoxide, carbon dioxide, and oxides of nitrogen. Carbon dioxide or dry chemical extinguishers should be used for acetonitrile fires.

공업 용도

Acetonitrile is used as a solvent both in industry and in the laboratory, as a rodenticide, and in the denaturation of alcohol. Because of both its solvent properties and volatility, it is useful for extracting vegetable and animal oils and dissolving hydrocarbons, oils, and greases. Acetonitrile is used for the purification of acetylene and artificial textile fibers, and as an antioxidant for rubber (Dequidt et al 1974). It has also been used to extract herbicide residues from soils (Smith 1980), to remove tars and other compounds from petroleum hydrocarbons, and to extract fatty acids from vegetable and fish liver oil. Acetonitrile is now a standard solvent component in reversed-phase high-performance liquid chromatography. It is the starting point for the syntheses of a number of organic compounds such as carboxylic acids and various nitrogen derivatives (Smiley 1981).

Safety Profile

Poison by ingestion and intraperitoneal routes. Moderately toxic by several routes. An experimental teratogen. Other experimental reproductive effects. A skin and severe eye irritant. Human systemic effects by ingestion: convulsions, nausea or vomiting, and metabolic acidosis. Human respiratory system effects by inhalation. Mutation data reported. Dangerous fire hazard when exposed to heat, flame, or oxidizers. Explosion Hazard: See also CYANIDE and NITRILES. When heated to decomposition it emits highly toxic fumes of CNand NOx,. Potentially explosive reaction with lanthanide perchlorates and nitrogen-fluorine compounds. Exothermic reaction with sulfuric acid at 53°C. Will react with water, steam, acids to produce toxic and flammable vapors. Incompatible with oleum, chlorosulfonic acid, perchlorates, nitrating agents, inchum, dinitrogen tetraoxide, N-fluoro compounds (e.g., perfluorourea + acetonitrile), HNO3, so3. To fight fire, use foam, Con, dry chemical

잠재적 노출

Acetonitrile is used as an extractant for animal and vegetable oils, as a solvent; particularly in the pharmaceutical industry, and as a chemical intermediate in pesticide manufacture; making batteries and rubber products. It is present in cigarette smoke


Biological. Resting cell suspensions of the soil methylotroph Methylosinus trichosporium OB- 3b rapidly metabolized acetonitrile via oxygen insertion into the C-H bond generating the intermediate formaldehyde cyanohydrin. The latter compound loses hydrogen cyanide yielding formaldehyde which is then oxidized to formate (HCO2H) and bicarbonate ion (Castro et al., 1996).
Photolytic. A rate constant of 4.94 x 10-14 cm3/molecule?sec at 24 °C was reported for the vaporphase reaction of acetonitrile and OH radicals in air (Harris et al., 1981). Reported rate constants for the reaction of acetonitrile and OH radicals in the atmosphere and in water are 1.90 x 10-14 and 3.70 x 10-14 cm3/molecule?sec, respectively (Kurylo and Knable, 1984). The estimated lifetime of acetonitrile in the atmosphere is estimated to range from 6 to 17 months (Arijs and Brasseur, 1986).
Chemical/Physical. The estimated hydrolysis half-life of acetonitrile at 25 °C and pH 7 is >150,000 yr (Ellington et al., 1988). No measurable hydrolysis was observed at 85 °C at pH values 3.26 and 6.99. At 66.0 °C (pH 10.42) and 85.5 °C (pH 10.13), the hydrolysis half-lives based on first-order rate constants were 32.2 and 5.5 d, respectively (Ellington et al., 1987). The presence of hydroxide or hydronium ions facilitates hydrolysis transforming acetonitrile to the intermediate acetamide which undergoes hydrolysis forming acetic acid and ammonia (Kollig, 1993). Acetic acid and ammonia formed react quickly forming ammonium acetate. At an influent concentration of 1,000 mg/L, treatment with GAC resulted in an effluent concentration of 28 mg/L. The adsorbability of the carbon used was 194 mg/g carbon (Guisti et al., 1974).
Burns with a luminous flame (Windholz et al., 1983), releasing toxic fumes of hydrogen cyanide.

신진 대사

Acetonitrile metabolism in dogs was demonstrated by Lang (1894), who reported that about 20% of the nitrile administered was converted to thio-cyanate in the urine, while guinea pigs metabolized acetonitrile to a greater extent (50% of dose excreted as thiocyanate). When the animals were pre-treated with ethanol, acetonitrile metabolism was induced (Tanii and Hashimoto 1986). In rats, acetone was found to potentiate acetonitrile toxicity and elevate cyanide concentrations in the blood (Freeman and Hays 1985). Baumann et al (1933) found that rabbits injected with acetonitrile excreted 27-35% of the dose as thiocyanate, while in thyroidectomized rabbits, the excretion decreased significantly (3-5% of the dose). Thiocyanate excretion was increased notably upon feeding dessicated thyroid to these animals. Hunt (1923) found that powdered sheep thyroid protected mice against acetonitrile toxicity. However, the role played by the thyroid in the detoxication of cyanide to thiocyanate is unclear. It has been suggested that the thyroid may have a role in the microsomal cleavage of cyanide from acetonitrile other than its direct effect on sulphation of cyanide to thiocyanate.
The nature of oxidizing enzymes for nitriles in general, including acetonitrile have been studied by Ahmed and Patel (1979). The enzymes were localized in the hepatic microsomal fraction and required NADPH as a cofactor in the presence of oxygen. In recent studies on the mammalian metabolism of acetonitrile, the mechanisms of cyanide liberation, and the enzymes involved, have also been reported by Tanii and Hashimoto (1984, 1986) and Freeman and Hays (1988). These studies confirmed the role of microsomal mixed function oxidase in the metabolism of acetonitrile.
Firmin and Gray (1976) studied the fate of acetonitrile in the bacterium Pseudomonas. They found that [14C]-acetonitrile is metabolized to citrate, succinate, fumarate, malate, glutamate, pyrrolidonecarboxylic acid, and asparate. They reported that this species of bacteria metabolized acetonitrile by direct hydrolysis of the cyanide moiety to acetamide. Although it is possible that a similar reaction may occur in mammalian systems, it has not yet been reported.


Acetonitrile should be used only in areas free of ignition sources, and quantities greater than 1 liter should be stored in tightly sealed metal containers in areas separate from oxidizers.

운송 방법

UN1648 Acetonitrile, Hazard Class: 3; Labels: 3-Flammable liquid

Purification Methods

Commercial acetonitrile is a by-product of the reaction of propylene and ammonia to acrylonitrile. The following procedure that significantly reduces the levels of acrylonitrile, allyl alcohol, acetone and *benzene was used by Kiesel [Anal Chem 52 2230 1988]. Methanol (300mL) is added to 3L of acetonitrile fractionated at high reflux ratio until the boiling temperature rises from 64o to 80o, and the distillate becomes optically clear down to = 240nm. Add sodium hydride (1g) free from paraffin, to the liquid, reflux for 10minutes, and then distil rapidly until about 100mL of residue remains. Immediately pass the distillate through a column of acidic alumina, discarding the first 150mL of percolate. Add 5g of CaH2 and distil the first 50mL at a high reflux ratio. Discard this fraction, and collect the following main fraction. The best way of detecting impurities is by gas chromatography. Usual contaminants in commercial acetonitrile include H2O, acetamide, NH4OAc and NH3. Anhydrous CaSO4 and CaCl2 are inefficient drying agents. Preliminary treatment of acetonitrile with cold, saturated aqueous KOH is undesirable because of base-catalysed hydrolysis and the introduction of water. Drying by shaking with silica gel or Linde 4A molecular sieves removes most of the water in acetonitrile. Subsequent stirring with CaH2 until no further hydrogen is evolved leaves only traces of water and removes acetic acid. The acetonitrile is then fractionally distilled at high reflux, taking precaution to exclude moisture by refluxing over CaH2 [Coetzee Pure Appl Chem 13 429 1966]. Alternatively, 0.5-1% (w/v) P2O5 is often added to the distilling flask to remove most of the remaining water. Excess P2O5 should be avoided because it leads to the formation of an orange polymer. Traces of P2O5 can be removed by distilling from anhydrous K2CO3. Kolthoff, Bruckenstein and Chantooni [J Am Chem Soc 83 3297 1961] removed acetic acid from 3L of acetonitrile by shaking for 24hours with 200g of freshly activated alumina (which had been reactivated by heating at 250o for 4hours). The decanted solvent was again shaken with activated alumina, followed by five batches of 100-150g of anhydrous CaCl2. (Water content of the solvent was then less than 0.2%.) It was shaken for 1hour with 10g of P2O5, twice, and distilled in a 1m x 2cm column, packed with stainless steel wool and protected from atmospheric moisture by CaCl2 tubes. The middle fraction had a water content of 0.7 to 2mM. Traces of unsaturated nitriles can be removed by initially refluxing with a small amount of aqueous KOH (1mL of 1% solution per L). Acetonitrile can be dried by azeotropic distillation with dichloromethane, *benzene or trichloroethylene. Isonitrile impurities can be removed by treatment with conc HCl until the odour of isonitrile has gone, followed by drying with K2CO3 and distilling. Acetonitrile is refluxed with, and distilled from alkaline KMnO4 and KHSO4, followed by fractional distillation from CaH2. (This is better than fractionation from molecular sieves or passage through a type H activated alumina column, or refluxing with KBH4 for 24hours and fractional distillation)[Bell et al. J Chem Soc, Faraday Trans 1 73 315 1977, Moore et al. J Am Chem Soc 108 2257 1986]. Material suitable for polarography is obtained by refluxing over anhydrous AlCl3 (15g/L) for 1hour, distilling, refluxing over Li2CO3 (10g/L) for 1hour and redistilling. It is then refluxed over CaH2 (2g/L) for 1hour and fractionally distilled, retaining the middle portion. The product is not suitable for UV spectroscopy use. A better purification procedure uses refluxing over anhydrous AlCl3 (15g/L) for 1hour, distilling, refluxing over alkaline KMnO4 (10g KMnO4, 10g Li2CO3/L) for 15minutes, and distilling. A further reflux for 1hour over KHSO4 (15g/L), then distillation, is followed by refluxing over CaH2 (2g/L) for 1hour, and fractional distillation. The product is protected from atmospheric moisture and stored under nitrogen [Walter & Ramalay Anal Chem 45 165 1973]. Purificaton of "General Purity Reagent" for this purpose is not usually satisfactory because very large losses occur at the KMnO4/LiCO3 step. For electrochemical work involving high oxidation fluorides, further reflux over P2O5 (1g/mL for 0.5hours) and distilling (discarding 3% of first and last fractions) and repeating this step is necessary. The distillate is kept over molecular sieves in vacuo after degassing, for 24hours and distilling in a vacuum onto freshly activated 3A molecular sieves. The MeCN should have absorption at 200nm of <0.05 (H2O reference) and UV cutoff at ca 175nm. Also the working potential range of purified Et4N+ BF4 (0.1mol.dcm-3 in the MeCN) should be +3.0 to -2.7V vs Ag+/Ago. If these criteria are not realised then further impurities can be removed by treatment with activated neutral alumina (60 mesh) in vacuo before final molecular sieves treatment [Winfield J Fluorine Chem 25 91 1984]. Acetonitrile has been distilled from AgNO3, collecting the middle fraction over freshly activated Al2O3. After standing for two days, the liquid is distilled from the activated Al2O3. The specific conductivity should be 0.8-1.0 x 10-8 mhos [Harkness & Daggett Can J Chem 43 1215 1965]. Acetonitrile 14C is best purified by gas chromatography and is water free and distils at 81o. [Beilstein 2 H 183, 2 IV 419.]

비 호환성

Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, chlorosulfonic acid, oleum, epoxides. May accumulate static electrical charges, and may cause ignition of its vapors. Nitriles may polymerize in the presence of metals and some metal compounds. They are incompatible with acids; mixing nitriles with strong oxidizing acids can lead to extremely violent reactions. Nitriles are generally incompatible with other oxidizing agents such as peroxides and epoxides. The combination of bases and nitriles can produce hydrogen cyanide. Nitriles are hydrolyzed in both aqueous acid and base to give carboxylic acids (or salts of carboxylic acids). These reactions generate heat. Peroxides convert nitriles to amides. Nitriles can react vigorously with reducing agents. Acetonitrile and propionitrile are soluble in water, but nitriles higher than propionitrile have low aqueous solubility. They are also insoluble in aqueous acids

폐기물 처리

Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal. Incineration with nitrogen oxide removal from effluent gases by scrubbers or incinerators

아세토나이트릴 준비 용품 및 원자재


준비 용품

아세토나이트릴 공급 업체

글로벌( 379)공급 업체
공급자 전화 팩스 이메일 국가 제품 수 이점
Anhui Royal Chemical Co., Ltd.
+86-025-86736275 CHINA 488 55
Henan Tianfu Chemical Co.,Ltd.
0371-55170693 CHINA 20672 55
Shanghai Time Chemicals CO., Ltd.
+86-021-57951555 CHINA 1365 55
Mainchem Co., Ltd.
+86-0592-6210733 CHINA 32447 55
career henan chemical co
+86-371-86658258 CHINA 30001 58
Hubei Jusheng Technology Co.,Ltd.
027-59599243 CHINA 28236 58
Haihang Industry Co.,Ltd
+86 531 8582 1093 CHINA 8921 58
hdzhl biotechnology co., ltd
86-13032617415 CHINA 1178 58
Xiamen AmoyChem Co., Ltd
+86 592-605 1114 CHINA 6372 58
Henan Xiangtong Chemical Co., Ltd.
86-371-86017988 CHINA 268 58

아세토나이트릴 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved