Tetrahydrofuran
Description
Description
Chemical Properties
Uses
resin solvent
reaction solvent
Purification of tetrahydrofuran
Toxicology
Production method
|
|
|
Tetrahydrofuran Properties
- Melting point:
- 33-36 °C
- Boiling point:
- 66 °C
- Density
- 0.887 g/mL at 20 °C
- vapor density
- 2.5 (vs air)
- vapor pressure
- <0.01 mm Hg ( 25 °C)
- refractive index
- n
20/D 1.465
- Flash point:
- >230 °F
- storage temp.
- 2-8°C
- solubility
- water: soluble
- form
- Liquid
- color
- <10(APHA)
- Relative polarity
- 0.207
- PH
- 7-8 (200g/l, H2O, 20℃)
- Odor
- Ethereal, detectable at 2 to 50 ppm
- explosive limit
- 1.5-12.4%(V)
- Water Solubility
- miscible
- FreezingPoint
- -108℃
- Sensitive
- Air Sensitive & Hygroscopic
- λmax
- λ: 245 nm Amax: ≤0.26
λ: 275 nm Amax: ≤0.046
λ: 315 μm Amax: ≤0.0044
- Merck
- 14,9211
- BRN
- 102391
- Stability:
- Stable. Incompatible with halogens, strong oxidizing agents, strong reducing agents, strong bases, oxygen. May generate explosive peroxides in storage if in contact with air. Highly flammable. Store at room temperature under nitrogen. Hazardous polymerisation may occur. Light sensitive. May contain 2,6-di-tertbutyl-4-methylphenol (BHT) as a s
- InChIKey
- WYURNTSHIVDZCO-UHFFFAOYSA-N
- CAS DataBase Reference
- 109-99-9(CAS DataBase Reference)
- NIST Chemistry Reference
- Furan, tetrahydro-(109-99-9)
- EPA Substance Registry System
- Furan, tetrahydro-(109-99-9)
SAFETY
- Risk and Safety Statements
- Hazard and Precautionary Statements (GHS)
Hazard Codes | Xi,F,Xn | ||
---|---|---|---|
Risk Statements | 36/37/38-36/37-19-11-40 | ||
Safety Statements | 26-36-33-29-16-46-37-13 | ||
RIDADR | UN 2924 3/PG 2 |
||
WGK Germany | 1 |
||
RTECS | MD0916000 |
||
F | 3-10-23 | ||
Autoignition Temperature | 610 °F | ||
TSCA | Yes | ||
HazardClass | 3 | ||
PackingGroup | II | ||
HS Code | 29321100 | ||
Hazardous Substances Data | 109-99-9(Hazardous Substances Data) | ||
Toxicity | LD50 oral (rat) 2880 mg/kg LC50 inhal (rat) 21,000 ppm (3 h) PEL (OSHA) 200 ppm (590 mg/m3) TLV-TWA (ACGIH) 200 ppm (590 mg/m3) STEL (ACGIH) 250 ppm (737 mg/m3) |
Symbol(GHS): |
![]() ![]() ![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Signal word: | Danger | |||||||||||||||||||||||||||||||||||||||||||||||||
Hazard statements: |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Precautionary statements: |
|
Tetrahydrofuran price More Price(128)
Manufacturer | Product number | Product description | CAS number | Packaging | Price | Updated | Buy |
---|---|---|---|---|---|---|---|
Sigma-Aldrich | 178810 | Tetrahydrofuran ReagentPlus , ≥99.0%, contains 250 ppm BHT as inhibitor | 109-99-9 | 1l | $105 | 2018-11-13 | Buy |
Sigma-Aldrich | 1601770 | Residual Solvent Class 2 - Tetrahydrofuran United States Pharmacopeia (USP) Reference Standard | 109-99-9 | 3x1.2ml | $348 | 2018-11-13 | Buy |
TCI Chemical | T0104 | Tetrahydrofuran (stabilized with BHT) >99.5%(GC) | 109-99-9 | 25mL | $14 | 2018-11-22 | Buy |
TCI Chemical | T0104 | Tetrahydrofuran (stabilized with BHT) >99.5%(GC) | 109-99-9 | 500mL | $23 | 2018-11-22 | Buy |
Alfa Aesar | 022904 | Tetrahydrofuran, UV, HPLC Grade, 99.7+% min unstab. | 109-99-9 | 250ml | $26.3 | 2018-11-20 | Buy |
Tetrahydrofuran Chemical Properties,Uses,Production
Description
Oral absorption | Very low |
Cmax 400 mg intravenous bolus | 25–40 mg/L after 1 h |
Description
Tetrahydrofuran, the abbreviation of THF, is a heterocyclic organic compound. It belongs to ethers and is the fully hydrogenated product of the aromatic compound furan.It can be used as an aprotic solvent with moderate polarity in chemical reaction and solvent extraction. Tetrahydrofuran is a colorless, low viscosity liquid with a similar smell as ether. At room temperature, tetrahydrofuran is partially miscible with water. This is exploited by some of the illegal businessmen for mixing water with tetrahydrofuran reagent to earn huge profits. Upon storage, tetrahydrofuran can easily become peroxide, and therefore, the commercialized tetrahydrofuran often used BHT, i.e., 2,6-tert butyl p-cresol for preventing oxidation. Tetrahydrofuran can be placed into sealed bottle through sodium hydroxide for being stored in a dark place.
Chemical Properties
It is colorless, transparent liquid with ether odor. It is miscible with water, alcohols, ketones, benzene, esters, ethers, and hydrocarbons.Uses
1. It can be used as the solvent and the raw material of organic synthesis.2. It can also be used as the chromatography analysis reagents, organic solvents and the intermediate of nylon 66.
3. Tetrahydrofuran is the intermediate for synthetic pesticides fenbutatin. In addition, it can be directly used for synthetic fibers, synthetic resins, synthetic rubber as well as the solvent of many polymeric materials, precision tape and electroplating industry. Moreover, it is also used for preparation of adiponitrile, adipic acid, hexamethylene diamine, succinic acid, butanediol, and γ-butyrolactone. In the pharmaceutical industry, it can be used for the production of carbetapentane, progesterone, rifamycin and pharmaceutical solvents.
4. THF is an important raw material for organic synthesis as well as a solvent with excellent performance, which is especially suitable for dissolution of PVC, polyvinylidene chloride and butyl aniline. It is widely used as surface coating, anti-corrosion coatings, printing inks, the solvent of tapes and films paint, and also being used as the reaction solvent. When being used as the electroplate aluminum solution, it can randomly control the thickness as well as brightness of aluminum layer. THF itself can be subject to condensation (caused by the ring-open reaction induced by cation and further polymerization) to generate poly-tetramethylene ether glycol (PTMEG). PTMEG, together with toluene diisocyanate (TDI) can generate special rubber of wear-resistant, oil resistance, excellent performance at low temperature as well as high strength; it can also generate block polyether/polyester elastic material with dimethyl terephthalate and 1, 4-butanediol. PTMGE of Molecular weight being 2000, together with methylene bis (4-phenyl) diisocyanate (MDI) can generate polyurethane elastic fiber (SPANDEX fiber), special rubber and the raw material of some kinds of coatings of special purpose. In the field of organic synthesis, it can be used for producing tetrahydrothiophene, 1, 4-dichloroethane, 2, 3-dichloro-tetrahydrofuran, valerolactone, butyrolactone and pyrrolidone. In the pharmaceutical industry, THF can be used for the synthesis of carbetapentane, rifamycin, progesterone, and some kinds of hormone drugs. THF, after being subject to hydrogen sulfide treatment, can generate tetrahydrothiophene. It can be used as the odor agent (identification additive) in fuel gas. THF can also be used as the surface treatment agent for synthetic leather.
5. It can also be applied to the paper chromatography of amino acids and peptides. It can be used as solvent; for organic synthesis as well as being applied to HPLC and UV spectrophotometry assay.
resin solvent
flexographic inks for plasticscoating deposition for audio and video tapes
PVC and CPVC pipe cements
polyurethane coatings
PVC film casting (food packaging)
reaction solvent
Grignard Reagent formation processespharmaceutical steroids
preparation of organometallic reagents
Purification of tetrahydrofuran
Tetrahydrofuran is miscible with water and often contains a small amount of water and peroxide. For making dry tetrahydrofuran, you can make it through flux with lithium aluminium hydride insulting the moisture (typically 1000 mL takes about 2~4 lithium aluminum hydride for removing the water and peroxide inside it, then further go through distillation; when collect the distilling fraction at 66 ℃, don’t totally dry it without the remaining small amount of residue being poured). Add the sodium wire to the refined liquid and further store it in a nitrogen atmosphere. Upon processing of tetrahydrofuran, we should first apply a small amount of it for being subject to testing to make sure that it only contains a small amount of water and peroxide with a relative mild reaction before we can purify it. The peroxide contained in tetrahydrofuran can be determined by the acidified potassium iodide solution. If the peroxides are in relative large amount, it is recommended that it is processed separately.Toxicology
Oral-rat; LD50: 1650 mg/kg; inhalation LC50: 21000 ppm/3H. Inhalation-mice LCLo: 24000 mg/m3/2H.It has low toxicity. This product has irritation effect on the skin and mucous membranes. At high concentrations it has an anesthetic effect with the anesthetic concentration being similar as lethal concentrations. High dose also has certain liver toxicity.
Rats, when being inhaled of 590mg/m^ 3, after 3 hours, has their eyelids and nasal become redness; inhalation> 147750mg/m^ 3, corneal edema and opacity, salivation, runny nose and nasal bleeding can occur.
Rats, guinea pigs, rabbits and cats, when being placed in a concentration of 50mg/L concentration for 3 hours, some animals can get side down; deepened anesthesia can appear under a dose of 100mg/L; some animals can directly die after exposure of 1 to 4.5 hours; a dose of 200 mg/ L can cause anesthesia within 1 hour with long term action being able to cause death. Rats, when get the inhaled concentrations> 14000mg/m ^ 3, can sleep, get stiffness, enter into deep coma, get convulsions, and also have epileptic brain waves. For the anesthesia effect, the animals can development certain resistance after repeated inhalation. Animals, when exposed to high doses once or repeated exposure, can get liver fatty infiltration and cell lysis. The oral administration can cause stomach bleeding and ulcers.
Applying 20% aqueous solution directly to the skin of rabbits can cause moderate skin irritation while 50% aqueous solution can cause severe corrosive damage.
Applying 20% aqueous solution to the rabbit eyes can cause severe keratitis.
THF, when touched with air, can form explosive peroxides which can increase the stimulating effect of THF.
According the foreign report, the concentration for causing anesthesia of human is 73800mg/m ^ 3. The threshold of human olfactory is 88.5mg/m ^ 3.
The above information is edited by the Chemicalbook of Dai Xiongfeng.
Production method
The earliest industrial production use uronic as raw material and put the mixture of uronic and steam into the reactor containing zinc-chromium-manganese metal oxide (or palladium) catalyst for stripping the carbonyl group at 400-420 ℃ to obtain furan; then take the raney nickel as the catalyst, perform furan hydrogenation reaction at 80-120 ℃ to obtain tetrahydrofuran. Applying this method for the production of one ton of tetrahydrofuran will cost about three tons of polysaccharide aldehyde. There are many kinds of production process developed later. Industrial methods include 1, 4-butanediol catalytic dehydration method; because butanediol is produced from acetylene and formaldehyde, this method is called as Reppe method; another method taking the byproduct of neoprene monomer chloroprene, 1, 4-dichloro-butene for production of tetrahydrofuran. This method is called dichloro butene method. In recent years, it was developed of the catalytic hydrogenation using maleic anhydride as the raw material.There are mainly five kinds of approaches for production of tetrahydrofuran, as below:
1. Furfural method
It can be made through the decarbonylation of furfural can generate furan, and then have hydrogenation to obtain it.
This is one of the earliest ways of production of tetrahydrofuran on industrial process. Furfural is mainly produced through the hydrolysis of corn cob and other agricultural products. The pollution is serious and is not suitable for large-scale production and has been gradually eliminated.
2. Catalytic hydrogenation of maleic anhydride
Maleic anhydride and hydrogen gas were put into the reactor containing nickel catalyst inside of it from the bottom; the ratio between tetrahydrofuran and γ-butyrolactone in the product can be controlled by adjusting the operating parameters. The reaction product and the raw material hydrogen gas were cooled to about 50 ℃ and enter into the bottom of the scrubber to separate the unreacted hydrogen and gaseous product from liquid product; The unreacted hydrogen and the gaseous products were recycled to the reactor after washing while the liquid product was subject to distillation to obtain tetrahydrofuran.
This technology can randomly adjust the ratio of γ-butyrolactone and tetrahydrofuran at the range of 0 to (5:1) with the conversion rate of maleic anhydride in single round being 100%. The selectivity of tetrahydrofuran ranges from 85% to 95% with the product content being 99.97%. The process has good catalyst performance, simple process, and less investment.
3. 1, 4-butanediol dehydration cyclization
This process is that: ad 1087 kg of 22% aqueous sulfuric acid to the reactor, add 1,4-butanediol at 100 ℃ at a rate of 110kg/h with the overhead temperature being maintained at 80 °C. By doing this, we can obtain the 80% tetrahydrofuran anhydrous solution from the top of the tower at a speed of 110 kg/h speed. After adding 50 t of 1, 4-butanediol, you should further exclude approximately 70kg coke from the reactor. The coke was further filtered with the resulting aqueous sulfuric acid solution being able to be recycled. The tetrahydrofuran yield of this process can reach 99%.
Sulfuric acid is the earliest catalyst applied in the industrial production of tetrahydrofuran, and it also has a lot of applications in current production. This technology is mature with simple process, lower reaction temperatures, and high yield of tetrahydrofuran. However, the sulfuric acid is corrosive to equipment and can cause environmental pollution.
4. dichloro-butene method
This method takes 1, 4-dichloro-butene as raw material to produce butylene glycol through hydrolysis and further go through catalytic hydrogenation to obtain it.
1, 4-dichloro-butene can be hydrolyzed in sodium hydroxide solution with generating butylene glycol at 110°C. Centrifuge to remove the sodium chloride; the filtrate was concentrated in an evaporator crystallizer and the alkali metal carboxylate slat can be separated out; then remove the high-boiling matter in distillation column. Put the refined butenediol into the reactor; tae nickel as catalyst and have butenediol undergone hydrogenation reaction to generate butanediol at 80~120 ℃ and certain pressure. After distillation, the resulting product further entered into cyclization reactor to generate crude tetrahydrofuran in acidic medium at atmospheric pressure and at 120~140 ℃; Further conduct distillation and dehydration and remove high-boiling substance; finally distill again to obtain highly pure tetrahydrofuran.
This method is simple with mild conditions, high yield and less catalyst which can be used continuously.
5. Oxidation of butadiene
Use butadiene as raw material; it generate furan after oxidation; furan further generate the tetrahydrofuran through hydrogenation. This method has been industrialized in foreign countries.
Chemical Properties
Tetrahydrofuran is a clear, colourless liquid with ether-like odour. It is highly flammable. Contact of tetrahydrofuran with strong oxidising agents may cause explosions. Tetrahydrofuran may polymerise in the presence of cationic initiators. Contact with lithium–aluminium hydride, with other lithium–aluminium alloys, or with sodium or potassium hydroxide can be hazardous.Chemical Properties
Tetrahydrofuran (THF, tetramethylene oxide, diethylene oxide, 1,4-epoxybutane, tetrahydrofurane, oxolane) is an industrial solvent widely recognized for its unique combination of useful properties. DuPont THF is better than 99.9% pure with a small (0.025-0.040 wt % ) amount of butylated hydroxytoluene (BHT, 4-methyl-2,6-di-tertbutyl phenol) added as an antioxidant. Tetrahydrofuran is a cycloaliphatic ether and is not "photochemically reactive" as defined in Section k of Los Angeles County's Rule 66 (equivalent to Rule 442 of the Southern California Air Pollution Control District). THF has an ethereal odor. The Odor Threshold is listed @ 3.8 (3M), 20-50 ppm, and 31 ppm.Uses
Suitable for HPLC, spectrophotometry, environmental testingDefinition
ChEBI: A cyclic ether that is butane in which one hydrogen from each methyl group is substituted by an oxygen.Uses
Solvent for high polymers, especially polyvinyl chloride. As reaction medium for Grignard and metal hydride reactions. In the synthesis of butyrolactone, succinic acid, 1,4-butanediol diacetate. Solvent in histological techniques. May be used under Federal Food, Drug & Cosmetic Act for fabrication of articles for packaging, transporting, or storing of foods if residual amount does not exceed 1.5% of the film: Fed. Regist. 27, 3919 (Apr. 25, 1962).General Description
A clear colorless liquid with an ethereal odor. Less dense than water. Flash point 6°F. Vapors are heavier than air.Air & Water Reactions
Highly flammable. Oxidizes readily in air to form unstable peroxides that may explode spontaneously [Bretherick, 1979 p.151-154, 164]. Soluble in water.Reactivity Profile
Tetrahydrofuran reacts violently with oxidizing agents leading to fires and explosions [Handling Chemicals Safely 1980. p. 891]. Subject to peroxidation in the air. Peroxides or their products react exothermically with lithium aluminum hydride [MCA Guide for Safety 1973]. Thus, use as a solvent for lithium aluminum hydride has led to fires. Using potassium hydroxide or sodium hydroxide to dry impure Tetrahydrofuran that contains peroxides has resulted in explosions. A violent explosion occurred during the preparation of sodium aluminum hydride from sodium and aluminum in a medium of Tetrahydrofuran [Chem. Eng. News 39(40):57. 1961]. THF forms explosive products with 2-aminophenol [Lewis 3227].Health Hazard
Vapors cause nausea, dizziness, headache, and anesthesia. Liquid can de-fat the skin and cause irritation. Liquid also irritates eyes.Health Hazard
The acute toxicity of THF by inhalation and ingestion is low. Liquid THF is a severe eye irritant and a mild skin irritant, but is not a skin sensitizer. At vapor levels of 100 to 200 ppm, THF irritates the eyes and upper respiratory tract. At high concentrations (25,000 ppm), THF vapor can produce anesthetic effects. Since the odor threshold for THF is well below the permissible exposure limit, this substance is regarded as having good warning properties.Limited animal testing indicates that THF is not carcinogenic and shows developmental effects only at exposure levels producing other toxic effects in adult animals. Bacterial and mammalian cell culture studies demonstrate no mutagenic activity with THF.
Fire Hazard
THF is extremely flammable (NFPA rating = 3), and its vapor can travel a considerable distance to an ignition source and "flash back." A 5% solution of THF in water is flammable. THF vapor forms explosive mixtures with air at concentrations of 2 to 12% (by volume). Carbon dioxide or dry chemical extinguishers should be used for THF fires.THF can form shockand heat-sensitive peroxides, which may explode on concentration by distillation or evaporation. Always test samples of THF for the presence of peroxides before distilling or allowing to evaporate. THF should never be distilled to dryness.
Safety Profile
Moderately toxic by ingestion and intraperitoneal routes. Mildly toxic by inhalation. Human systemic effects by inhalation: general anesthesia. Mutation data reported. Irritant to eyes and mucous membranes. Narcotic in high concentrations. Reported as causing injury to liver and kidneys. Flammable liquid. A very dangerous fire hazard when exposed to heat, flames, oxidizers. Explosive in the form of vapor when exposed to heat or flame. In common with ethers, unstabilized tetrahydrofuran forms thermally explosive peroxides on exposure to air. Stored THF must always be tested for peroxide prior to distdlation. Peroxides can be removed by treatment with strong ferrous sulfate solution made slightly acidic with sodium bisulfate. Caustic alkalies deplete the inhibitor in THF and may subsequently cause an explosive reaction. Explosive reaction with KOH, NaAlH2, NaOH, sodium tetrahydroaluminate. Reacts with 2-aminophenol + potassium dioxide to form an explosive product. Reacts with lithium tetrahydroaluminate or borane to form explosive hydrogen gas. Violent reaction with metal halides (e.g., hafnium tetrachloride, titanium tetrachloride, zirconium tetrachloride). Vigorous reaction with bromine, calcium hydride + heat. Can react with oxidizing materials. To fight fire, use foam, dry chemical, COa. When heated to decomposition it emits acrid smoke and irritating fumes. See also 2TETRAHYDROFURYL HYDROPEROXIDEPotential Exposure
The primary use of tetrahydrofuran is as a solvent to dissolve synthetic resins, particularly polyvinyl chloride and vinylidene chloride copolymers. It is also used to cast polyvinyl chloride films, to coat substrates with vinyl and vinylidene chloride; and to solubilize adhesives based on or containing polyvinyl chloride resins. A second large market for THF is as an electrolytic solvent in the Grignard reaction-based production of tetramethyl lead. THF is used as an intermediate in the production of polytetramethylene glycol.First aid
If this chemical gets into the eyes, remove any contact lenses at once and irrigate immediately for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts the skin, remove contaminated clothing and wash immediately with soap and water. Seek medical attention immediately. If this chemical has been inhaled, remove from exposure, begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. When this chemical has been swallowed, get medical attention. Give large quantities of water and induce vomiting. Do not make an unconscious person vomit.storage
THF should be used only in areas free of ignition sources, and quantities greater than 1 liter should be stored in tightly sealed metal containers in areas separate from oxidizers. Containers of THF should be dated when opened and tested periodically for the presence of peroxides.Shipping
UN2056 Tetrahydrofuran, Hazard Class: 3; Labels: 3-Flammable liquid.Purification Methods
It is obtained commercially by catalytic hydrogenation of furan from pentosan-containing agricultural residues. It was purified by refluxing with, and distilling from LiAlH4 which removes water, peroxides, inhibitors and other impurities [Jaeger et al. J Am Chem Soc 101 717 1979]. Peroxides can also be removed by passage through a column of activated alumina, or by treatment with aqueous ferrous sulfate and sodium bisulfate, followed by solid KOH. In both cases, the solvent is then dried and fractionally distilled from sodium. Lithium wire or vigorously stirred molten potassium have also been used for this purpose. CaH2 has also been used as a drying agent. Several methods are available for obtaining the solvent almost anhydrous. Ware [J Am Chem Soc 83 1296 1961] dried it vigorously with sodium-potassium alloy until a characteristic blue colour was evident in the solvent at Dry-ice/cellosolve temperatures. The solvent is kept in contact with the alloy until distilled for use. Worsfold and Bywater [J Chem Soc 5234 1960], after refluxing and distilling from P2O5 and KOH, in turn, refluxed the solvent with sodium-potassium alloy and fluorenone until the green colour of the disodium salt of fluorenone was well established. [Alternatively, instead of fluorenone, benzophenone, which forms a blue ketyl, can be used.] The tetrahydrofuran was then fractionally distilled, degassed and stored above CaH2. p-Cresol or hydroquinone inhibit peroxide formation. The method described by Coetzee and Chang [Pure Appl Chem 57 633 1985] for 1,4-dioxane also applies here. Distillations should always be done in the presence of a reducing agent, e.g. FeSO4. [Beilstein 17 H 10, 17 I 5, 17 II 15, 17 III/IV 24, 17/1 V 27.] It irritates the skin, eyes and mucous membranes, and the vapour should never be inhaled. It is HIGHLY FLAMMABLE, and the necessary precautions should be taken. Rapid purification: Purification as for diethyl ether.Flammability and Explosibility
THF is extremely flammable (NFPA rating = 3), and its vapor can travel a considerable distance to an ignition source and "flash back." A 5% solution of THF in water is flammable. THF vapor forms explosive mixtures with air at concentrations of 2 to 12% (by volume). Carbon dioxide or dry chemical extinguishers should be used for THF fires.THF can form shock- and heat-sensitive peroxides, which may explode on concentration by distillation or evaporation. Always test samples of THF for the presence of peroxides before distilling or allowing to evaporate. THF should never be distilled to dryness.
Incompatibilities
Forms thermally explosive peroxides in air on standing (in absence of inhibitors). Peroxides can be detonated by heating, friction, or impact. Reacts violently with strong oxidizers, strong bases and some metal halides. Attacks some forms of plastics, rubber and coatings.Waste Disposal
Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal. Concentrated waste containing peroxides-perforation of a container of the waste from a safe distance followed by open burning.Tetrahydrofuran Preparation Products And Raw materials
Raw materials
Polychloroprene
1,4-Butanediol
Nickel
2-CHLORO-1,3-BUTADIENE
IRISH MOSS
PALLADIUM-CATALYSTS
Hydrogen
Metallic oxides
cis-1,4-Dichloro-2-butene
gamma-Butyrolactone
Preparation Products
Jiuma plate amino-acid surfactant
SODIUM PHENOLATE TRIHYDRATE
Norethindrone
4-TERT-BUTYLBENZYL ALCOHOL
1-(2-NAPHTHYL)METHANAMINE
9-Anthracenemethanol
Chiral 2,2-Disubstituted thiaprolinol derivatives
(R)-TERT-LEUCINOL
2-(4-tert-Butylphenyl)ethanol
1,4-Butane sultone
Erythromycin ethylsuccinate
3-tert-butyl-1H-1,2,4-triazole-5-thiol
N-methylaminoethanol sodium phosphate
4-Amino-5-bromo-2-chloropyrimidine
1,4-Diiodobutane
L(+)-Leucinol
2-Chloroisonicotinaldehyde
Benzyldimethylhexadecylammonium chloride
(S)-(-)-4-tert-Butyloxazolidine-2,5-dione
7-Fluoroindole
L-Tryptophanol
4-Chlorobutylbenzoate
TERT-BUTYLMAGNESIUM CHLORIDE
(S)-(?)-α,α-Diphenyl-2-pyrrolidinemethanol
BENZO[B]THIOPHENE-2-CARBOXALDEHYDE
2,5-Dimethylpiperazine
Quinestrol
Allylmagnesium chloride
Levonorgestrel
N-(2-Aminoethyl)piperidine
2,3,4-Tribromothiophene
(4-AMINO-PYRIDIN-3-YL)-METHANOL
3-Cyanophenylboronic acid
Dioctyl(maleate)tin
Cyclopropylacetic acid
2,3-Difluorophenylboronic acid
2,2'-DIPYRIDYLAMINE
Vinylferrocene
Tetrahydrothiophene
(1,5-DIMETHYL-1H-PYRAZOL-3-YL)METHANOL
Tetrahydrofuran Suppliers
Global( 385)Suppliers
Supplier | Tel | Fax | Country | ProdList | Advantage | |
---|---|---|---|---|---|---|
Hebei Jiangkai Trading Co., Ltd | 0086-17197824289/17197824028 |
alice@hbjkai.com | CHINA | 277 | 58 | |
Hefei TNJ Chemical Industry Co.,Ltd. | 86-0551-65418684 18949823763 |
86-0551-65418684 | info@tnjchem.com | China | 1583 | 55 |
Jiangsu Qingquan Chemical Co., Ltd. | +86-571-86589381/86589382/86589383 |
lyy@qqpharm.com | sales1@qqpharm.com | CHINA | 137 | 55 |
Tianjin Zhongxin Chemtech Co., Ltd. | 022-89880739 |
022-66880086 | sales@tjzxchem.com | CHINA | 560 | 58 |
Anhui Royal Chemical Co., Ltd. | +86-025-86736275 |
dana.jiang@royal-chem.com | CHINA | 477 | 55 | |
Hebei Guanlang Biotechnology Co., Ltd. | +86-0311-66562153 whatsapp +8615203118427 |
+86-0311-66562153 | sales@crovellbio.com | CHINA | 417 | 50 |
Henan DaKen Chemical CO.,LTD. | +86-371-55531817 |
info@dakenchem.com | CHINA | 22058 | 58 | |
Aoxuan Biological Technology Co., Ltd. | 17073140108 |
- | CHINA | 147 | 55 | |
Henan Tianfu Chemical Co.,Ltd. | 0371-55170693 |
0371-55170693 | info@tianfuchem.com | CHINA | 20795 | 55 |
Mainchem Co., Ltd. | +86-0592-6210733 |
+86-0592-6210733 | sales@mainchem.com | CHINA | 32764 | 55 |
View Lastest Price from Tetrahydrofuran manufacturers
Image | Release date | Product | Price | Min. Order | Purity | Supply Ability | Manufacturer | |
---|---|---|---|---|---|---|---|---|
![]() |
2019-01-17 |
xxxx 109-99-9 |
US $5.00 / Kg | 10Kg | 99% | 2 | Meihua Biological Technology Co.,Ltd | |
![]() |
2018-08-06 |
Tetrahydrofuran 109-99-9 |
US $10.00 / KG | 1KG | 99% | 5MT per month | Hebei Guanlang Biotechnology Co., Ltd. | |
![]() |
2018-08-06 |
Tetrahydrofuran 109-99-9 |
US $1.00 / KG | 1KG | 99% | 10kg | career henan chemical co |
109-99-9(Tetrahydrofuran)Related Search:
Poly(tetrahydrofuran) beta-D-Ribofuranose 1-acetate 2,3,5-tribenzoate Tetrahydrofuran 1-BUTENE Cyclopentene METHYLCYCLOPENTADIENE DIMER Cyclopentanone NITROUS OXIDE ETHYLENE OXIDE Iron oxide (Diethoxymethyl)diphenylphosphine oxide NITRIC OXIDE Methyl cyclopentenolone 1,3-Dioxolane 1,3-Cyclopentadiene 1,4-Butanediol Magnesium oxide Zinc oxide
- 1,4-epoxy-butan
- agrisynththf
- Butane alpha,delta-oxide
- Butane, 1,4-epoxy-
- butane,alpha,delta-oxide
- butanealpha,delta-oxide
- Dynasolve 150
- Hydrofuran
- NCI-C60560
- Oxacyclopentane
- oxolan
- Oxolane
- QO Tetrahydrofuran (THF)
- Rcra waste number U213
- rcrawastenumberu213
- tetrahydro-fura
- Tetrahydrofuraan
- Tetrahydrofurane
- Tetrahydrofuranne
- tetrahydrofuranne(french)
- Tetraidrofurano
- THF (tetrahydrofuran)
- ALPHA-HYDRO-OMEGA-HYDROXYPOLY(OXY-1,4-BUTANEDIYL)
- TETRAMETHYLENE ETHER GLYCOL 650 POLYMER
- TETRAMETHYLENE ETHER GLYCOL 1000 POLYMER
- TETRAMETHYLENE ETHER GLYCOL 2900 POLYMER
- POLYTETRAMETHYLENE ETHER GLYCOL 650 S
- POLYTETRAMETHYLENE ETHER GLYCOL 250
- POLYTETRAMETHYLENE ETHER GLYCOL 2000
- POLYTETRAMETHYLENE ETHER GLYCOL 1800
- POLYTETRAMETHYLENE ETHER GLYCOL 1400
- POLY (TETRAMETHYLENE OXIDE) 650
- POLY(TETRAMETHYLENE OXIDE) 2,000
- POLY(1,4-OXYBUTYLENE) GLYCOL
- POLY(1,4-BUTANEDIOL)
- POLYETETRAHYDROFURAN, LINEAR-CHAIN POLYMER
- tetrahydrofuran B&J brand 4 L
- Tetrahydrfuran
- TETRAHYDROFURAN, DIST. FOR HPLC, 6X1 L
- TETRAHYDROFURAN, 99.5+% (INHIBITED WITH 0.025% BHT)
- TETRAHYDROFURAN, FOR UV-SPECTROSCOPY
- TETRAHYDROFURAN 'BJ BRAND'
- TETRAHYDROFURAN, STANDARD FOR GC
- CAP MIX A, WITH 2,6-LUTIDINE (80% THF, 10% ACETIC ANHYDRIDE,10% 2,6-LUTIDINE)
- TETRAHYDROFURAN 99+% A.C.S. REAGENT &
- TETRAHYDROFURAN, STAB.
- 1,2-DICHLOROETHANE SPECTRANAL,REAG. ACS, REAG. PH. EUR.
- IODINE(OXIDIZER), 0.47 WT.% SOLUTION IN%
- TETRAHYDROFURAN, 99+%, A.C.S. REAGENT (S AFETY CAN)
- TETRAHYDROFURAN 99.9% B&J BRAND INHI&
- Tetrahydrofuran, anhydrous, >=99.9%
- TETRAHYDROFURAN DIST. FOR HPLC 4X2.5 L
- TETRAHYDROFURAN, 99.5+%, SPECTROPHOTO-ME TRIC GRADE, INHIBITOR FREE
- TETRAHYDROFURAN, 4X25 ML
- TETRAHYDROFURAN, FOR LUMINESCENCE
- TETRAHYDROFURAN CHROMASOLV PLUS FOR &
- TETRAHYDROFURAN, FOR AMINO ACID ANALYSIS , 6X10 ML
- TETRAHYDROFURAN PURISS. P.A.,STABILIZED