Chinese Japanese Germany


Chemical Name:
Molecular Formula:
Formula Weight:
MOL File:

Oxygen Properties

Melting point:
−218 °C(lit.)
Boiling point:
−183 °C(lit.)
vapor density 
1.11 (vs air)
vapor pressure 
>760 mmHg at 20 °C
storage temp. 
At 20 °C and at a pressure of 101 kPa, 1 volume dissolves in about 32 volumes of water.
colorless gas
Odorless gas
Water Solubility 
one vol gas dissolves in 32 volumes H2O (20°C), in 7 volumes alcohol (20°C); soluble other organic liq, usually higher solubility than in H2O [MER06]
Stable. Vigorously supports combustion. Incompatible with phosphorus, organic materials, many powdered metals.
CAS DataBase Reference
7782-44-7(CAS DataBase Reference)
NIST Chemistry Reference
EPA Substance Registry System
  • Risk and Safety Statements
  • Hazard and Precautionary Statements (GHS)
Hazard Codes  O,C
Risk Statements  8-52/53-34-48/20/22-37
Safety Statements  17-45-36/37/39-26-61
RIDADR  UN 1072 2.2
WGK Germany  -
RTECS  RS2060000
HazardClass  2.2
Hazardous Substances Data 7782-44-7(Hazardous Substances Data)
Toxicity OSHA recommends a minimum oxygen concentration of 19.5% for human occupancy.
Signal word: Danger
Hazard statements:
Code Hazard statements Hazard class Category Signal word Pictogram P-Codes
H270 May cause or intensify fire; oxidizer Oxidising gases Category 1 Danger P220, P244, P370+P376, P403
H280 Contains gas under pressure; may explode if heated Gases under pressure Compressed gas
Liquefied gas
Dissolved gas
Warning P410+P403
Precautionary statements:
P220 Keep/Store away from clothing/…/combustible materials.
P410+P403 Protect from sunlight. Store in a well-ventilated place.

Oxygen price

Manufacturer Product number Product description CAS number Packaging Price Updated Buy

Oxygen Chemical Properties,Uses,Production

Chemical Properties

Oxygen, O2, is a colorless, tasteless, gaseous element essential to almost all forms of life. It promotes respiration and combustion. Oxygen comprises 20% of the earth's atmosphere and is the most abundant element in seawater and in the earth's crust. It is slightly soluble in water and alcohol, but combines readily with most other elements to form oxides. The electrolysis of water produces both oxygen and hydrogen.

Chemical Properties

Oxygen is a colorless odorless gas or a bluish cryogenic liquid.


Oxygen, as a gaseous element, forms 21% of the atmosphere by volume from which it can be obtained by liquefaction and fractional distillation. The atmosphere of Mars contains about 0.15% oxygen. The element and its compounds make up 49.2%, by weight, of the Earth’s crust. About two thirds of the human body and nine tenths of water is oxygen. In the laboratory it can be prepared by the electrolysis of water or by heating potassium chlorate with manganese dioxide as a catalyst. The gas is colorless, odorless, and tasteless. The liquid and solid forms are a pale blue color and are strongly paramagnetic. Ozone (O3), a highly active compound, is formed by the action of an electrical discharge or ultraviolet light on oxygen. Ozone’s presence in the atmosphere (amounting to the equivalent of a layer 3 mm thick at ordinary pressures and temperatures) is of vital importance in preventing harmful ultraviolet rays of the sun from reaching the Earth’s surface. There has been recent concern that pollutants in the atmosphere may have a detrimental effect on this ozone layer. Ozone is toxic and exposure should not exceed 0.2 mg/m3 (8-hour time-weighted average — 40-hour work week). Undiluted ozone has a bluish color. Liquid ozone is bluish black, and solid ozone is violet- black. Oxygen is very reactive and capable of combining with most elements. It is a component of hundreds of thousands of organic compounds. It is essential for respiration of all plants and animals and for practically all combustion. In hospitals it is frequently used to aid respiration of patients. Its atomic weight was used as a standard of comparison for each of the other elements until 1961 when the International Union of Pure and Applied Chemistry adopted carbon 12 as the new basis. Oxygen has thirteen recognized isotopes. Natural oxygen is a mixture of three isotopes. Oxygen 18 occurs naturally, is stable, and is available commercially. Water (H2O with 1.5% 18O) is also available. Commercial oxygen consumption in the U.S. is estimated to be 20 million short tons per year and the demand is expected to increase substantially in the next few years. Oxygen enrichment of steel blast furnaces accounts for the greatest use of the gas. Large quantities are also used in making synthesis gas for ammonia and methanol, ethylene oxide, and for oxy-acetylene welding. Air separation plants produce about 99% of the gas, electrolysis plants about 1%. The gas costs 5¢/ft3 ($1.75/cu. meter) in small quantities.


In oxyhydrogen or oxyacetylene flame for welding metals and for lighting (calcium light, etc); submarine work by divers, propellant for rockets. In the production of synthesis gas which can be used in the Fischer-Tropsch process for liquid fuels.


The most abundant elementon earth, making up about 47% of the earth’s mass,and essential for respiration.

General Description

Oxygen is a colorless, odorless and tasteless gas. Oxygen will support life. Oxygen is noncombustible, but will actively support the burning of combustible materials. Some materials that will not burn in air will burn in Oxygen. Materials that burn in air will burn more vigorously in Oxygen. As a non-liquid gas Oxygen is shipped at pressures of 2000 psig or above. Pure Oxygen is nonflammable. Under prolonged exposure to fire or intense heat the containers may rupture violently and rocket. Oxygen is used in the production of synthesis gas from coal, for resuscitation and as an inhalant.

Reactivity Profile

Propellant; ignites upon contact with alcohols, alkali metals, amines, ammonia, beryllium alkyls, boranes, dicyanogen, hydrazines, hydrocarbons, hydrogen, nitroalkanes, powdered metals, silanes, or thiols [Bretherick 1979. p.174]. Heat of water will vigorously vaporize liquid Oxygen, pressures may build to dangerous levels if this occurs in a closed container. Liquid Oxygen gives a detonable mixture when combined with powdered aluminum [NFPA 491M. 1991].

Health Hazard

Inhalation of 100% Oxygen can cause nausea, dizziness, irritation of lungs, pulmonary edema, pneumonia, and collapse. Liquid may cause frostbite of eyes and skin.

Health Hazard

Oxygen is nontoxic under the usual conditions of laboratory use. Breathing pure oxygen at one atmosphere may produce cough and chest pains within 8 to 24 h, and concentrations of 60% may produce these symptoms in several days. Liquid oxygen can cause severe "burns" and tissue damage on contact with the skin due to extreme cold.

Fire Hazard

Oxygen itself is nonflammable, but at concentrations greater than 25% supports and vigorously accelerates the combustion of flammable materials. Some materials (including metals) that are noncombustible in air will burn in the presence of oxygen.

Fire Hazard

Behavior in Fire: Increases intensity of any fire. Mixtures of liquid Oxygen and any fuel are highly explosive.

Agricultural Uses

Oxygen (O) is an odorless, colorless, gaseous element that belongs to group 16 (formerly group VI) of the Periodic Table. It is the most abundant element in the earth's crust (49.2% by weight), is present in the atmosphere (20% by volume) and is a constituent of water. It exists in three isotopes 16, 17 and 18. Oxygen is essential for respiration of most living organisms and for combustion. It is used in metallurgical processes, in high temperature flames (welding) and in medical treatment.
The common form of oxygen is di-atomic oxygen (O2) There is also another form - reactive allotrope ozone (O3)C.h emically, oxygen reacts with most other elements forming oxides. For industrial use, it is obtained by fractional distillation of liquid air. This has been replaced by a process which utilizes ambient temperature separation by means of a pressure cycle in which molecular sieves of synthetic zeolite preferentially absorb nitrogen from air, giving 95 % oxygen and 5 % argon.
The most popular industrial use of oxygen is in oxygen enrichment of steel blast furnaces. Large quantities of oxygen are used in the synthesis of nitric acid from ammonia, methanol and ethylene oxide, as also in oxy-acetylene welding.

Safety Profile

Human systemic effects by inhalation: cough and other pulmonary changes. Human teratogenic effects by inhalation: developmental abnormalities of the fetal cardovascular system. Mutation data reported. Not toxic as gas. In liquid form it can cause severe "burns" and tissue damage on contact with the slun due to extreme cold. An oxidant. Though itself nonflammable,it is essential to combustion. Even a slight increase in the oxygen content of the air above the normal 21% greatly increases the oxidation or burning rate (and the hazard) of many materials. Exclusion of O2 from the neighborhood of a fire is one of the principal methods of extinguishment. Avoid smoking, flames, electric sparks. Liquid O2 can explode on contact with readdy oxidizable materials, especially at high temperatures. Under the proper condltions of temperature, pressure, and reagent concentration it can react violently with acetaldehyde, acetylene, acetone, secondary alcohols (e.g., 2-propanol, 2-butanol) aluminum, Al(BH4)3, AH3, aluminumtitanium alloys, alkali metals @hum, cesium, potassium, rubidlum, sodlum, potassium), ammonia, ammonia + platinum, asphalt, ccl4, chlorinated hydrocarbons, cyanogen, barium, benzene, 1,4-benzenediol + 1-propanol, benzoic acid, Be(BH4)2, biological materials + ether, BAszBr3, B2H10, diH6, boron tribromide, boron trichloride, bromine + chlorotrifluoroethylene, butane + Ni(CO)4, carbon disulfide, carbon disulfide + mercury + anthracene, carbon monoxide, CsH, calcium, calcium hosphide, copper + hydrogen sulfide, Cl0H14, cyclohexane-l,2-done biskhenylhydrazone), cycl0℃tatetraene, dborane, diboron tetrafluoride, dimethoxymethane, dimethylketene, dimethyl sulfide, diphenyl ethylene, disilane, ethers (e.g., diethyl ether, diisopropyl ether, tetrahydro furan, dtoxane, ethyl ether), fibrous fabrics, fluorine + hydrogen, fuels, germanium, glycerol, halocarbons (e.g., l,l,l-trichloroethane, trichloroethylene, chlorotrifluoroethylene, bromotrifluoroethylene), hydrazine, hydrocarbons (e.g., 1,l-dphenylethylene, gasoline, cyclohexane, ethylene, cumene, pxylene, but-3-yne), hydrocarbons + promoters (e.g., methyl nitrate, nitromethane, ethyl nitrate, tetrafluorohydrazine), hydrogen, hydrogen sulfide, lithiated dalkylnitrosoamines, magnesium, metals, metal hydrides (e.g., sodtum hydride, uranium hydride, lithium h ydride, potassium hydride , rubidium hydride, cesium hydride, magnesium hydride), methane, methoxycycl0℃tatetraene, 4-methoxytoluene7 Ni(CO)4 + butane, nonmetal hydrides (e.g., diborane, tetraborane(lO), phosphine, pentaborane(1 l), pentaborane(9) , decaborane(l4), aluminum tetrahydroborate), oil films, organic matter, (OF2 + H20), phosphorus, phosphorus tribromide, phosphorus trifluoride, phosphorus(IⅡ) oxide, polymers [e.g., foam rubber, neoprene, polytetrafluoroethylene (teflon)], polytetrafluoroethylene + stainless steel, polyurethane, polyvinyl chloride, propylene oxide, K2O2, rhenium, trirhenium nonachloride, rubber + ozone, rubberized fabric, selenium, NaH, sodium hydroxide + tetramethyldsiloxane, strontium, tetracarbonylnickel, tetracarbonylnickel + mercury, tetrafluoroethylene, tetrafluorohydrazine, tetrasilane, titanium and alloys, trisilane, CH2Cl2, oil, paraformaldehyde, wood, charcoal. Compressed O2 is shipped in steel cylinders under hgh pressure. If these containers are broken due to shock or exposed to high temperature, an explosion and fire may result.

Potential Exposure

Compressed oxygen is used in various oxidation processes, for feedstock; and enrichment purposes; as a medicinal gas; a chemical intermediate; in oxyacetylene welding; in metallurgy. Liquid oxygen is used as a rocket fuel. Oxygen is naturally present at a concentration of 21% in breathing air.

First aid

Eye Contact: With liquid oxygen -Immediately remove any contact lenses and flush with large amounts of water for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. Skin Contact: With liquid oxygen-I. If frostbite has occurred, seek medical attention immediately; do not rub the affected areas or flush them with water. In order to prevent further tissue damage, do not attempt to remove frozen clothing from frostbitten areas. If frostbite has not occurred, immediately and thoroughly wash contaminated skin with soap and water. Seek medical attention. Breathing Pure Oxygen or Gases >40% O2; Remove the person from exposure. Begin (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. Medical observation is recommended for 24-48 hours after breathing overexposure, as pulmonary edema may be delayed.


UN1072 Oxygen, compressed & UN1073 Oxygen, refrigerated liquid (cryogenic liquid), Hazard Class: 2.2; Labels: 2.2-Nonflammable compressed gas; 5.1- Oxidizer. Cylinders must be transported in a secure upright position, in a well-ventilated truck. Protect cylinder and labels from physical damage. The owner of the compressed gas cylinder is the only entity allowed by federal law (49CFR) to transport and refill them. It is a violation of transportation regulations to refill compressed gas cylinders without the express written permission of the owner.

Purification Methods

Purify it by passing the gas over finely divided platinum at 673oK and Cu(II) oxide (see under nitrogen) at 973o, then condensed in a liquid N2-cooled trap. HIGHLY EXPLOSIVE in contact with organic matter.

Flammability and Explosibility

Oxygen itself is nonflammable, but at concentrations greater than 25% supports and vigorously accelerates the combustion of flammable materials. Some materials (including metals) that are noncombustible in air will burn in the presence of oxygen.


A strong oxidizer. Reacts violently with nearly every element, combustibles, organics, and reducing materials.

Waste Disposal

Return refillable compressed gas cylinders to supplier. Vent to atmosphere.

Oxygen Preparation Products And Raw materials

Raw materials

Preparation Products

Oxygen Suppliers

Global( 53)Suppliers
Supplier Tel Fax Email Country ProdList Advantage
Henan DaKen Chemical CO.,LTD.
+86-371-55531817 CHINA 22049 58
Henan Tianfu Chemical Co.,Ltd.
0371-55170693 CHINA 20786 55
Mainchem Co., Ltd.
+86-0592-6210733 CHINA 32651 55
JinYan Chemicals(ShangHai) Co.,Ltd. 13817811078,021-50426030
86-021-50426522,50426273 China 10073 60
Chizhou Kailong Import and Export Trade Co., Ltd. Please Email
- China 9671 50
Sigma-Aldrich 021-61415566 800-819-3336(Tel) 400-620-3333(Mobile)
021-61415567 China 28593 80
Shanghai wechem chemical co., ltd 021-5198 7501
021-6192 7501 China 286 58
Zibo Zeno Pharmaceutical Technology Co., Ltd. 0533-8800999 13515338377
0533-7544744 China 57 58
JinJinLe Chemical 10106090 China 9585 58
Shanghai He Huan Chemical Co., Ltd. 021-60345187 13917602471
021-60345187 CHINA 9887 58

Oxygen Spectrum

7782-44-7(Oxygen)Related Search:

Copyright 2017 © ChemicalBook. All rights reserved