ChemicalBook
Chinese English Japanese Germany Korea

N,N-다이메틸폼아마이드

N,N-다이메틸폼아마이드
N,N-다이메틸폼아마이드 구조식 이미지
카스 번호:
68-12-2
한글명:
N,N-다이메틸폼아마이드
동의어(한글):
다이메틸폼아마이드;N,N-다이메틸폼아마이드;N,N-디메틸포름아미드;N-포밀다이메틸아민;디메틸포름아미드;디엠에프;N,N-다이메틸포름아마이드;다이메틸포름아마이드
상품명:
N,N-Dimethylformamide
동의어(영문):
EMF;DMF;DMFA;U-4224;nsc5356;NSC-5356;Luvistin;dmf(amide);HCON(CH3)2;NCI-C60913
CBNumber:
CB2854115
분자식:
C3H7NO
포뮬러 무게:
73.09
MOL 파일:
68-12-2.mol

N,N-다이메틸폼아마이드 속성

녹는점
-61 °C
알파
0.94 º
끓는 점
153 °C(lit.)
밀도
0.948 g/mL at 20 °C
증기 밀도
2.5 (vs air)
증기압
2.7 mm Hg ( 20 °C)
굴절률
n20/D 1.430(lit.)
인화점
136 °F
저장 조건
Store at RT.
용해도
water: miscible
물리적 상태
Powder
색상
APHA: ≤15
상대극성
0.386
수소이온지수(pH)
7 (200g/l, H2O, 20℃)
냄새
Faint, ammonia-like odor detectable at 100 ppm
폭발한계
2.2-16%(V)
수용성
soluble
감도
Hygroscopic
최대 파장(λmax)
λ: 270 nm Amax: 1.00
λ: 275 nm Amax: 0.30
λ: 295 nm Amax: 0.10
λ: 310 nm Amax: 0.05
λ: 340-400 nm Amax: 0.01
Merck
14,3243
BRN
605365
InChIKey
ZMXDDKWLCZADIW-UHFFFAOYSA-N
CAS 데이터베이스
68-12-2(CAS DataBase Reference)
NIST
Formamide, N,N-dimethyl-(68-12-2)
EPA
Formamide, N,N-dimethyl-(68-12-2)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 T
위험 카페고리 넘버 61-20/21-36
안전지침서 53-45
유엔번호(UN No.) UN 2265 3/PG 3
WGK 독일 1
RTECS 번호 LQ2100000
F 고인화성물질 3-10
자연 발화 온도 445 °C
위험 참고 사항 Toxic
TSCA Yes
위험 등급 3
포장분류 III
HS 번호 29241990
유해 물질 데이터 68-12-2(Hazardous Substances Data)
독성 LD50 in mice, rats (ml/kg): 6.8, 7.6 orally; 6.2, 4.7 i.p. (Bartsch)
그림문자(GHS):
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H226 인화성 액체 및 증기 인화성 액체 구분 3 경고
H302 삼키면 유해함 급성 독성 물질 - 경구 구분 4 경고 P264, P270, P301+P312, P330, P501
H312 피부와 접촉하면 유해함 급성 독성 물질 - 경피 구분 4 경고 P280,P302+P352, P312, P322, P363,P501
H318 눈에 심한 손상을 일으킴 심한 눈 손상 또는 자극성 물질 구분 1 위험 P280, P305+P351+P338, P310
H319 눈에 심한 자극을 일으킴 심한 눈 손상 또는 자극성 물질 구분 2A 경고 P264, P280, P305+P351+P338,P337+P313P
H331 흡입하면 유독함 급성 독성 물질 흡입 구분 3 위험 P261, P271, P304+P340, P311, P321,P403+P233, P405, P501
H332 흡입하면 유해함 급성 독성 물질 흡입 구분 4 경고 P261, P271, P304+P340, P312
H341 유전적인 결함을 일으킬 것으로 의심됨 (노출되어도 생식세포 유전독성을 일으키지 않는다는 결정적인 증거가 있는 노출경로가 있다면 노출경로 기재) 생식세포 변이원성 물질 구분 2 경고 P201,P202, P281, P308+P313, P405,P501
H360 태아 또는 생식능력에 손상을 일으킬 수 있음 생식독성 물질 구분 1A, 1B 위험
H370 장기(또는, 영향을 받은 알려진 모든 장기를 명시)에 손상을 일으킴(노출되어도 특정 표적장기 독성을 일으키지 않는다는 결정적인 노출경로가 있다면 노출경로를 기재) 특정 표적장기 독성 - 1회 노출 구분 1 위험 P260, P264, P270, P307+P311, P321,P405, P501
H372 장기간 또는 반복 노출되면 장기(또는, 영향을 받은 알려진 모든 장기를 명시)에 손상을 일으킴 특정 표적장기 독성 - 반복 노출 구분 1 위험 P260, P264, P270, P314, P501
예방조치문구:
P201 사용 전 취급 설명서를 확보하시오.
P202 모든 안전 조치 문구를 읽고 이해하기 전에는 취급하지 마시오.
P210 열·스파크·화염·고열로부터 멀리하시오 - 금연 하시오.
P233 용기를 단단히 밀폐하시오. 용기는 환기가 잘 되는 곳에 단단히 밀폐하여 보관하시오.
P240 용기와 수용설비를 접지 및 접합시키시오.
P260 분진·흄·가스·미스트·증기·...·스프레이를 흡입하지 마시오.
P261 분진·흄·가스·미스트·증기·...·스프레이의 흡입을 피하시오.
P264 취급 후에는 손을 철저히 씻으시오.
P264 취급 후에는 손을 철저히 씻으시오.
P270 이 제품을 사용할 때에는 먹거나, 마시거나 흡연하지 마시오.
P271 옥외 또는 환기가 잘 되는 곳에서만 취급하시오.
P280 보호장갑/보호의/보안경/안면보호구를 착용하시오.
P303+P361+P353 피부(또는 머리카락)에 묻으면 오염된 모든 의복은 벗거나 제거하시오 피부를 물로 씻으시오/샤워하시오.
P305+P351+P338 눈에 묻으면 몇 분간 물로 조심해서 씻으시오. 가능하면 콘택트렌즈를 제거하시오. 계속 씻으시오.
P307+P311 노출된 경우,독성 물질 센터 또는 의사에게 전화하기
P308+P313 노출 또는 접촉이 우려되면 의학적인 조치· 조언를 구하시오.
P370+P378 화재 시 불을 끄기 위해 (Section 5. 폭발, 화재시 대처방법의 적절한 소화제)을(를) 사용하시오.
P405 밀봉하여 저장하시오.
P403+P233 용기는 환기가 잘 되는 곳에 단단히 밀폐하여 저장하시오.
P501 ...에 내용물 / 용기를 폐기 하시오.

N,N-다이메틸폼아마이드 MSDS


Dimethyl formamide

N,N-다이메틸폼아마이드 C화학적 특성, 용도, 생산

용도

DMF의 주요 용도는 증발 속도가 낮은 용제입니다 .DMF는 아크릴 섬유 및 플라스틱 생산에 사용됩니다. 또한 의약품의 펩타이드 커플 링, 살충제의 개발 및 생산, 접착제, 합성기, 섬유, 필름 및 표면 코팅의 제조에 용매로 사용됩니다.

용도

디메틸포름아미드는 특히 합성 피혁 제품의 생산을 위한 폴리우레탄 공정 영역에서 현저하게 많이 사용되고 있습니다. 작물 보호와 제약 산업에서는 활성 원료의 제조 시 사용됩니다. 또한 석유화학 산업에서는 벤젠이나 부타디엔 같은 특정한 제품의 추출을 위한 용도로 사용됩니다. 그 외에도 전기 산업에서는 회로 기판의 생산에 필요한 시재료의 제조 시 용매로서 사용됩니다.

용도

N, N- 디메틸 포름 아미드 (N, N-Dimethyl Formamide, DMF)는 주로 의약품의 제조 또는 첨단 산업 분야의 용제로서 사용됩니다. DMF는 주로 공업용 용매로 사용됩니다. DMF 용액은 폴리머 섬유, 필름 및 표면 코팅을 처리하는 데 사용됩니다. 아크릴 섬유를 쉽게 방사 할 수 있도록; 와이어 에나멜을 생산하고, 제약 업계의 결정화 매체로 사용됩니다.

용도

유기합성에서는 극성화합물의 용매로서 널리 쓰이는 외에 방향족화합물의 핵포르밀화, 기타 활성수소의 포르밀치환의 시약으로서 사용된다.

화학적 성질

Dimethylformamide is shorted for DMF. It is a compound formed by the substitution of the formic acid's hydroxyl group with dimethylamino group and the molecular formula HCON(CH3)2. It is a clear, transparent, high-boiling point liquid with a light amine flavor and a relative density of 0.9445 (25°C). React violently with concentrated sulfuric acid, fuming nitric acid and can even explode. It is soluble in water and most organic solvents that used as a common solvent for chemical reactions. Pure Dimethylformamide is odorless, but industrial grade or modified Dimethylformamide has a fishy smell because it contains impurities of Dimethylamine. Dimethylformamide is unstable (especially at high temperatures) in the presence of a strong base such as sodium hydroxide or a strong acid such as hydrochloric acid or sulfuric acid, and is hydrolyzed to formic acid and dimethylamine.

화학적 성질

Aqueous solutions of DMF have little tendency to hydrolyze. Even after 120 h of reflux, a 50% aqueous solution was hydrolyzed by only 0.17% (Eberling 1980). Hydrolysis is accelerated by acids or bases. The characteristic amine odor is due to moisture which causes slight hydrolysis to dimethylamine. Only a few p.p.m. of dimethylamine are required to produce this odor.
DMF in air, tissues and body fluids is conveniently determined by GLC (Kimmerle and Eben 1975a).

용도

Solvent for many hydrophobic organic compounds.

용도

N,N-Dimethylformamide (DMF) is a clear liquid that has been widely used in industries as a solvent, an additive, or an intermediate because of its extensive miscibility with water and most common organic solvents.
  1. Dimethylformamide is primarily used as an industrial solvent.  Dimethylformamide solutions are used toprocess polymer fibers, films, and surface coatings; to permit easy spinning of acrylic fibers; to produce wire enamels, and as a crystallization medium in the pharmaceutical industry.
  2. DMF can also be used for formylation with alkyllithium or Grignard reagents.
  3. It is used as a reagent in Bouveault aldehyde synthesis and also in Vilsmeier-Haack reaction. It acts as a catalyst in the synthesis of acyl chlorides. It is used for separating and refining crude from olefin gas. DMF along with methylene chloride acts as a remover of varnish or lacquers. It is also used in the manufacture of adhesives, fibers and films.
  4. N,N-Dimethylformamide (DMF) is a solvent with a low evaporation rate, useful for preparing solutions with a variety of hydrophobic organic compounds used in molecular biology applications.
  5. N,N-Dimethylformamide was used to solubilize MTT crystals in cell viability assays.It was also used in feruloyl esterase activity assay in molds exhibiting high activity of the enzyme.
  6. The world-wide consumption of DMF in 2001 was approximately 285, 000 metric tonnes and most of that was used as an industrial solvent.

용도

Solvent for liqs and gases. In the synthesis of organic compounds. Solvent for Orlon and similar polyacrylic fibers. Wherever a solvent with a slow rate of evaporation is required. Has been termed the universal organic solvent.

정의

ChEBI: A member of the class of formamides that is formamide in which the amino hydrogens are replaced by methyl groups.

생산 방법

Industrial production of N-N-dimethylformamide (DMF) is via three separate processes (Eberling 1980). Dimethylamine in methanol is reacted with carbon monoxide in the presence of sodium methoxide or metal carbonyls at 110-150°C and high pressure. Alternately, methyl formate is produced from carbon monoxide and methanol under high pressure at 60-100°C in the presence of sodium methoxide. The resulting methyl formate is distilled and then reacted with dimethylamine at 80-100°C and low pressure. The third process involves reaction of carbon dioxide, hydrogen and dimethylamine in the presence of halogen-containing transition metal compounds to yield DMF.

일반 설명

A water-white liquid with a faint fishy odor. Flash point 136°F. Slightly less dense than water. Vapors heavier than air. Toxic by inhalation or skin absorption. May irritate eyes.

공기와 물의 반응

Flammable. Water soluble.

반응 프로필

N,N-Dimethylformamide may react violently with a broad range of chemicals, e.g.: alkaline metals (sodium, potassium), azides, hydrides (sodium borohydride, lithium aluminum hydride), bromine, chlorine, carbon tetrachloride, hexachlorocyclohexane, phosphorus pentaoxide, triethylaluminum, magnesium nitrate, organic nitrates. Forms explosive mixtures with lithium azide [Bretherick, 5th ed., 1995, p. 453]. Oxidation by chromium trioxide or potassium permanganate may lead to explosion [Pal B. C. et al., Chem. Eng. News, 1981, 59, p. 47].

건강위험

Irritation of eyes, skin and nose. May cause nausea.

건강위험

The acute toxicity of DMF is low by inhalation, ingestion, and skin contact. Contact with liquid DMF may cause eye and skin irritation. DMF is an excellent solvent for many toxic materials that are not ordinarily absorbed and can increase the hazard of these substances by skin contact. Exposure to high concentrations of DMF may lead to liver damage and other systemic effects. Dimethylformamide is listed by IARC in Group 2B ("possible human carcinogen"). It is not classified as a "select carcinogen" according to the criteria of the OSHA Laboratory Standard. No significant reproductive effects have been observed in animal tests. Repeated exposure to DMF may result in damage to the liver, kidneys, and cardiovascular system

건강위험

A number of non-specific symptoms caused by DMF have been reported over the last 30 years in workers more or less frequently exposed to DMF, among them stomach pain, headache, loss of appetite, nausea, vomiting and general weakness (Martelli 1960; Massmann 1956; Reinl and Urban 1965; Tolot et al 1958). Other symptoms observed occasionally in humans exposed to DMF are psychotic excitation (Tolot et al 1969), hypertension (Potter 1973), leukocytosis (Potter 1973), dyspepsia and diarrhea (Paoletti and Iannaccone 1982). DMF appears to lack cardiotoxic potential (Taccola et al 1981). Recently DMF has fallen under suspicion to be associated with the etiology of testicular cancers in aircraft repairmen and leather tannery workers who were consistently exposed to the solvent (Ducatman et al 1986; Levin et al 1987).

화재위험

DMF is a combustible liquid (NFPA rating = 2). Vapors are heavier than air and may travel to source of ignition and flash back. DMF vapor forms explosive mixtures with air at concentrations of 2.2 to 15.2% (by volume). Carbon dioxide or dry chemical extinguishers should be used to fight DMF fires.

화재위험

Special Hazards of Combustion Products: Vapors are irritating

인화성 및 폭발성

DMF is a combustible liquid (NFPA rating = 2). Vapors are heavier than air and may travel to source of ignition and flash back. DMF vapor forms explosive mixtures with air at concentrations of 2.2 to 15.2% (by volume). Carbon dioxide or dry chemical extinguishers should be used to fight DMF fires.

공업 용도

World production capacity of DMF is about 225 x 103 tons per year. The main application of DMF is as solvent in industrial processes, especially for polar polymers such as Polyvinylchloride, polyacrylonitrile and polyurethanes. DMF solutions of high molecular weight polymers are processed to fibers, films, surface coatings and synthetic leathers. Since salts can be dissolved and dissociated in DMF, the solutions are used in electrolytic capacitors and certain electrolytic processes (Eberling 1980).

색상 색인 번호

This is an organic solvent for vinyl resins and acetylene, butadiene, and acid gases. It caused contact dermatitis in a technician at an epoxy resin factory and can provoke alcohol-induced flushing in exposed subjects.

Safety Profile

Suspected carcinogen. Moderately toxic by ingestion, intravenous, subcutaneous, intramuscular, and intraperitoneal routes. Mildly toxic by skin contact and inhalation. Experimental teratogenic and reproductive effects. A skin and severe eye irritant. Human mutation data reported. Flammable liquid when exposed to heat or flame; can react with oxidzing materials. Explosion hazard when exposed to flame. Explosive reaction with bromine, potassium permanganate, triethylaluminum + heat. Forms explosive mixtures with lithium azide (shock-sensitive above 2OO0C), uranium perchlorate. Igrution on contact with chromium trioxide. Violent reaction with chlorine, sodium hydroborate + heat, dusocyanatomethane, carbon tetrachloride + iron, 1,2,3,4,5,6 hexachlorocyclohexane + iron. Vigorous exothermic reaction with magnesium nitrate, sodum + heat, sodium hydride + heat, sulfinyl chloride + traces of iron or zinc, 2,4,6-trichloro-l,3,5-triazine (with gas evolution), and many other materials. Avoid contact with halogenated hydrocarbons, inorganic and organic nitrates, (2,5-diethyl pyrrole + P(OCl)3), cGCl6, methylene dusocyanates, P203. To fight fire, use foam, CO2, dry chemical. When heated to decomposition it emits toxic fumes of NOx

신진 대사 경로

Three urinary metabolites are identified in humans and rodents, and the metabolites quantified are N- (hydroxymethyl)-N-methylformamide (HMMF), resulting in N-methylformamide (NMF) and N-acetyl-S-(N- methylcarbamoyl)cysteine (AMCC). Ten volunteers who absorb between 28 and 60 mmol/kg DMF during an 8 h exposure to DMF in air at 6 mg=m3 excrete in the urine within 72 h between 16.1 and 48.7% of the dose as HMMF, between 8.3 and 23.9% as formamide, and between 9.7 and 22.8% as AMCC. AMCC together with HMMF is also detected in the urine of workers after occupational exposure to DMF. There is a quantitative difference between the metabolic pathway of DMF to AMCC in humans and rodents.

신진 대사

Blood and urine samples of rats (Barnes and Ranta 1972; Kimmerle and Eben 1975a; Scailteur et al 1981) and dogs (Kimmerle and Eben 1975a) which had been exposed to DMF were examined by GLC analysis and N-methylformamide (NMF, Fig. 1) and formamide were detected in addition to DMF. These metabolites were eliminated faster in rats than in dogs (Kimmerle and Eben 1975a). It has been suggested recently that the major metabolite of DMF which has been characterized as NMF by GLC is not NMF but N-hydroxymethyl-N-methylformamide (HMMF, Fig. 1) (Brindley et al 1983; Kestell et al 1986; Scailteur et al 1984). HMMF is the immediate product of methyl C-hydroxylation of DMF and is a relatively stable carbinolamide in aqueous solution. It is, however, thermally labile so that it decomposes quantitatively to NMF and presumably formaldehyde on the GLC column (Brindley et al 1983). The evidence that the metabolite which has been characterized as NMF is really HMMF is based on three studies. Brindley et al (1983) found a formaldehyde precursor in the urine of mice which had received DMF. This metabolite liberated formaldehyde only after alkaline hydrolysis. In aqueous solution, authentic HMMF also decomposed to formaldehyde only on alkaline hydrolysis. Scailteur et al (1984) isolated a urinary metabolite of DMF in rats by HPLC and subjected it to mass spectrometric analysis. The observed fragmentation pattern suggested the presence of HMMF, even though the mass fragments, including the one corresponding to the molecular ion, were also detected in control urine samples. Unequivocal evidence for the contention that HMMF and not NMF is the major metabolite of DMF was recently obtained by high-field proton NMF spectroscopy of urine samples of mice which had received DMF (Kestell et al 1986). HMMF exists in two rotameric forms and the methyl and formyl protons in the two rotamers are not equivalent. The resonance frequencies corresponding to the methyl and formyl protons of both rotamers were prominent signals in the NMR spectrum of the urine. However, at the resonance frequency of the methyl protons of NMF only a minute signal was observed. In this study dimethylamine and methylamine were found to be minor urinary metabolites of DMF in mice (Kestell et al 1986).
In rats, partial hepatectomy reduced the metabolism of DMF to HMMF (Scailteur et al 1984). There appeared to be a sex difference in metabolic rate: female rats excreted more unchanged DMF than did males (Scailteur et al 1984). In mice, 56% of the dose of 400 mg/kg DMF given i.p. was metabolized to HMMF (Brindley et al 1983). However, C-hydroxylation occurred at a very slow rate when DMF was incubated with liver fractions (Brindley et al 1983; Scailteur and Lauwerys 1984). The metabolic oxidation of DMF in vitro has been suggested to be mediated, at least in part, by hydroxy radicals and hydrogen peroxide, as this metabolic route measured in rat liver microsomes was reduced in the presence of catalase, Superoxide dismutase, and the radical scavengers DMSO, t-butanol, aminopyrine and hydroquinone (Scailteur and Lauwerys 1984). DMF itself inhibited the oxidation of DMSO, t-butanol and aminopyrine.
The metabolite which is now known to be HMMF, but appears to be NMF on GLC analysis, was also found together with DMF in the urine of humans exposed to DMF vapor (Kimmerle and Eben, 1975b; Krivanek et al 1978; Maxfield et al 1975). It was found shortly after the beginning of exposure to DMF. DMF concentrations decreased rapidly below detection limits (Kimmerle and Eben 1975b). What appeared to be NMF was measured in human urine after even a single exposure to the TLV of DMF and maximal concentrations of this metabolite occurred 6-12 h after exposure (Maxfield et al 1975). When humans were exposed to DMF at 8.8 p.p.m. for 6 h daily for 5 consecutive days, the metabolite which appeared to be NMF was rapidly eliminated so that little was found 24 h after each exposure. Furthermore, levels of this metabolite in the urine did not increase after repeated exposure to DMF vapors (Krivanek et al 1978) and the amount of the metabolite found in the urine of workers appeared to be correlated with the extent of their exposure to DMF (Yonemoto and Suzuki, 1980).
In humans, DMF is also metabolized to A^acetyl-S-(A^methylcarbamoyl) cysteine (Fig. 1), one of the major urinary metabolites of NMF (Mraz and Turecek 1987). This observation is compatible with the finding that workers exposed to DMF excreted more metabolites in the urine which afforded thiols on hydrolysis of urine samples than did unexposed subjects (Malanova and Bardodej, 1983). The details of the metabolic pathway which leads from DMF to the mercapturate are not known at present.

저장

DMF should be used only in areas free of ignition sources, and quantities greater than 1 liter should be stored in tightly sealed metal containers in areas separate from oxidizers.

Purification Methods

DMF decomposes slightly at its normal boiling point to give small amounts of dimethylamine and carbon monoxide. The decomposition is catalysed by acidic or basic materials, so that even at room temperature DMF is appreciably decomposed if allowed to stand for several hours with solid KOH, NaOH or CaH2. If these reagents are used as dehydrating agents, therefore, they should not be refluxed with the DMF. Use of CaSO4, MgSO4, silica gel or Linde type 4A molecular sieves is preferable, followed by distillation under reduced pressure. This procedure is adequate for most laboratory purposes. Larger amounts of water can be removed by azeotropic distillation with *benzene (10% v/v, previously dried over CaH2), at atmospheric pressure: water and *benzene distil below 80o. The liquid remaining in the distillation flask is further dried by adding MgSO4 (previously ignited overnight at 300-400o) to give 25g/L. After shaking for one day, a further quantity of MgSO4 is added, and the DMF is distillied at 15-20mm pressure through a 3-ft vacuum-jacketed column packed with steel helices. However, MgSO4 is an inefficient drying agent, leaving about 0.01M water in the final DMF. More efficient drying (to around 0.001-0.007M water) is achieved by standing with powdered BaO, followed by decanting before distillation, then with alumina powder (50g/L, previously heated overnight to 500-600o), and distilling from more of the alumina, or by refluxing at 120-140o for 24hours with triphenylchlorosilane (5-10g/L), then distilling at ca 5mm pressure [Thomas & Rochow J Am Chem Soc 79 1843 1957]. Free amine in DMF can be detected by the colour reaction with 1-fluoro-2,4-dinitrobenzene. It has also been purified by drying overnight over KOH pellets and then distilling from BaO through a 10 cm Vigreux column (p 11) [Jasiewicz et al. Exp Cell Res 100 213 1976]. [For efficiency of desiccants in drying dimethylformamide see Burfield & Smithers J Org Chem 43 3966 1978, and for a review on purification, tests of purity and physical properties, see Juillard Pure Appl Chem 49 885 1977.] It has been purified by distilling from K2CO3 under high vacuum and fractionated in an all-glass apparatus. The middle fraction is collected, degassed (seven or eight freeze-thaw cycles) and redistilled under as high a vacuum as possible [Mohammad & Kosower J Am Chem Soc 93 2713 1971]. [Beilstein 4 IV 171.] Rapid purification: Stir over CaH2 (5% w/v) overnight, filter, then distil at 20mmHg. Store the distilled DMF over 3A or 4A molecular sieves. For solid phase synthesis, the DMF used must be of high quality and free from amines.

비 호환성

Though stable at normal temperatures and storage conditions, DMF may react violently with halogens, acyl halides, strong oxidizers, and polyhalogenated compounds in the presence of iron. Decomposition products include toxic gases and vapors such as dimethylamine and carbon monoxide. DMF will attack some forms of plastics, rubber, and coatings.

폐기물 처리

Excess DMF and waste material containing this substance should be placed in an appropriate container, clearly labeled, and handled according to your institution's waste disposal guidelines.

N,N-다이메틸폼아마이드 준비 용품 및 원자재

원자재

준비 용품


N,N-다이메틸폼아마이드 공급 업체

글로벌( 456)공급 업체
공급자 전화 팩스 이메일 국가 제품 수 이점
Hefei TNJ Chemical Industry Co.,Ltd.
86-0551-65418684 18949823763
86-0551-65418684 info@tnjchem.com China 1750 55
Mainchem Co., Ltd.
+86-0592-6210733
+86-0592-6210733 sales@mainchem.com CHINA 32457 55
Hebei Guanlang Biotechnology Co., Ltd.
+86-0311-66562153 whatsapp +8615203118427
+86-0311-66562153 sales@crovellbio.com CHINA 407 50
Hebei Guanlang Biotechnology Co., Ltd.
+8619930501651
breeduan@crovellbio.com CHINA 928 58
Capot Chemical Co.,Ltd.
+86 (0)571-855 867 18
+86 (0)571-858 647 95 sales@capotchem.com China 19919 60
Henan DaKen Chemical CO.,LTD.
+86-371-55531817
info@dakenchem.com CHINA 21930 58
Henan Tianfu Chemical Co.,Ltd.
0371-55170693
0371-55170693 info@tianfuchem.com CHINA 20680 55
Tianjin Zhongxin Chemtech Co., Ltd.
022-89880739
022-66880086 sales@tjzxchem.com CHINA 558 58
Xiamen AmoyChem Co., Ltd
+86 (0)592-605 1114
sales@amoychem.com CHINA 6374 58
Hebei Chisure Biotechnology Co., Ltd.
+8613091036086; +8613292890173
+8613292893290 sandy@speedgainpharma.com; luna@speedgainpharma.com CHINA 1019 58

N,N-다이메틸폼아마이드 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved