Chinese English Japanese Germany Korea


글리세린 구조식 이미지
카스 번호:
포뮬러 무게:
MOL 파일:

글리세린 속성

20 °C(lit.)
끓는 점
290 °C
1.25 g/mL(lit.)
증기 밀도
3.1 (vs air)
<1 mm Hg ( 20 °C)
n20/D 1.474(lit.)
320 °F
저장 조건
H2O: 5 M at 20 °C, clear, colorless
산도 계수 (pKa)
14.15(at 25℃)
물리적 상태
Viscous Liquid
APHA: ≤10
Specific Gravity
1.265 (15/15℃)1.262
5.5-8 (25℃, 5M in H2O)
>500 g/L (20 ºC)
최대 파장(λmax)
λ: 260 nm Amax: 0.05
λ: 280 nm Amax: 0.04
JECFA Number
Stable. Incompatible with perchloric acid, lead oxide, acetic anhydride, nitrobenzene, chlorine, peroxides, strong acids, strong bases. Combustible.
CAS 데이터베이스
56-81-5(CAS DataBase Reference)
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 F,Xn
위험 카페고리 넘버 36-20/21/22-11
안전지침서 24/25-39-26
유엔번호(UN No.) UN 1282 3/PG 2
WGK 독일 1
RTECS 번호 MA8050000
F 고인화성물질 3
자연 발화 온도 698 °F
HS 번호 29054500
유해 물질 데이터 56-81-5(Hazardous Substances Data)
독성 LD50 in rats (ml/kg): >20 orally; 4.4 i.v. (Bartsch)
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H225 고인화성 액체 및 증기 인화성 액체 구분 2 위험 P210,P233, P240, P241, P242, P243,P280, P303+ P361+P353, P370+P378,P403+P235, P501
H315 피부에 자극을 일으킴 피부부식성 또는 자극성물질 구분 2 경고 P264, P280, P302+P352, P321,P332+P313, P362
H319 눈에 심한 자극을 일으킴 심한 눈 손상 또는 자극성 물질 구분 2A 경고 P264, P280, P305+P351+P338,P337+P313P
H320 눈에 자극을 일으킴 심한 눈 손상 또는 자극성 물질 구분 2B 경고 P264, P305+P351+P338,P337+P313
P210 열·스파크·화염·고열로부터 멀리하시오 - 금연 하시오.
P261 분진·흄·가스·미스트·증기·...·스프레이의 흡입을 피하시오.
P264 취급 후에는 손을 철저히 씻으시오.
P264 취급 후에는 손을 철저히 씻으시오.
P280 보호장갑/보호의/보안경/안면보호구를 착용하시오.
P305+P351+P338 눈에 묻으면 몇 분간 물로 조심해서 씻으시오. 가능하면 콘택트렌즈를 제거하시오. 계속 씻으시오.
P337+P313 눈에 대한 자극이 지속되면 의학적인 조치· 조언를 구하시오.
P370+P378 화재 시 불을 끄기 위해 (Section 5. 폭발, 화재시 대처방법의 적절한 소화제)을(를) 사용하시오.
P403+P235 환기가 잘 되는 곳에 보관하고 저온으로 유지하시오.

글리세린 MSDS


글리세린 C화학적 특성, 용도, 생산


무색투명하고 단맛이 나는 끈기 있는 액체로 흡습성이 강하다. 아주 순수한 글리세롤을 강하게 냉각하면, 녹는점 18℃의 결정을 얻는데, 과냉각을 일으키기 쉽다. 물과 알코올에는 임의의 비율로 섞이지만, 탄화수소에는 녹지 않는다. 글리세롤을 철(Ⅱ)염의 존재하에 과산화수소로 산화시키면 글리세르알데히드를 생성하는데, 과망간산칼륨과 같은 강한 산화제로 격렬하게 산화시키면 발화하거나 폭발을 일으킨다.


각종 화장품, 용제, 인쇄잉크, 탄약, 부동액, 제약, 셀로판, 투명비누, 접착제, 알키드수지, 안료, 다이나마이트 등.


Glycerol is a colorless, viscous, hygroscopic, sweet-tasting trihydric alcohol. It is also called glycerin or glycerine, with the term glycerol being preferred as the pure chemical form and the term glycerin(e) being primarily used when the compound is used commercially in various grades.

화학적 성질

Glycerin is a clear, colorless, odorless, viscous, hygroscopic liquid; it has a sweet taste, approximately 0.6 times as sweet as sucrose.

화학적 성질

Glycerin is the polyhydric alcohol 1,2,3 propanetriol [HOCH2-CH(OH)CH2OH] also known as glycerol. A clear, colorless, syrupy liquid having a sweet taste. It has not more than a slight characteristic odor, which is neither harsh nor disagreeable. It is hygroscopic and its solutions are neutral. Glycerin is miscible with water and with alcohol. It is insoluble in chloroform, in ether, and in fixed and volatile oils.
In the animal body, glycerin may be formed from ingested carbohydrates, from glycogen by glycolysis, and from fats and other lipids by hydrolysis. Commercially, glycerin can be produced by a number of methods including microbial fermentation of sugars, as a by-product in the manufacture of soap, or by synthesis from propylene.
Animal and vegetable fats contain about 10 percent by weight of glycerin. It is present in animal tissues to the extent of about 1 percent of the body weight. Glycerin is not an essential nutrient, but it furnishes energy by contributing to the general pool of oxidizable organic compounds.

화학적 성질

Glycerol is a sweet-tasting, syrupy liquid It has not more than a slight characteristic odor, which is neither harsh nor disagreeable Glycerol is a trihydric alcohol It is hygroscopic and its solutions are neutral.

화학적 성질

Glycerol is a viscous colorless or pale yellow, odorless, syrupy liquid.

화학적 성질

Glycerol,CH20HCHOHCH20H, also known as glycerin and glycyl alcohol, is a clear, colorless, viscous liquid with a sweet taste.It is the simplest trihydroxy alcohol and a valuable chemical intermediary, It is soluble in water and alcohol, but only partially soluble in ether and ethyl acetate. Glycerol is used in perfume and medicine,as an antifreeze,and in manufacturing soaps and explosives.


Reported found in cocoa, apple, cider, beer, sour cherries, peach and wine


Glycerol was first isolated from olive oil and lead oxide by the Swedish chemist Carl Scheele (1742–1786) while making lead plaster soap in 1779. Scheele eventually realized that glycerol was a common ingredient in fats and oils and referred to glycerol as “the sweet principle of fats.” In 1811, the French chemist Michel Eugene Chevreul (1786–1889), who was a pioneer in the study of fats and oils, proposed the name glycerine after the Greek word glucos, which means sweet. Chevreul decomposed soaps isolating different acids such as stearic and butyric acid and discovered that glycerol was liberated when oils and fats were boiled in a basic mixture. Th éophile-Jules Pelouze (1807–1867) derived glycerol’s empirical formula in 1836.


Glycerol's properties make it useful for numerous applications. The three hydroxyl groups in glycerol allow extensive hydrogen bonding that gives glycerol its characteristic syrupy viscous texture and hygroscopic character. Approximately 40% of glycerol's use is for personal care products such as cosmetics, soaps, shampoos, lotions, mouthwash, and toothpaste. Glycerol's hygroscopic properties make it a good moisturizer in skin products. Another 25% of glycerol's annual production is used in food production. In the food industry glycerol is used as a moistening agent, as a solvent for food coloring and syrups, to prevent crystallization of sugar in candies and icings, as a preservative, and as a sweetening agent. Approximately 10% of glycerol's use goes into tobacco processing, where it is sprayed on tobacco leaves before they are shredded to serve as a moistening agent. Glycerol has the added benefit of imparting a sweet taste to chewing tobacco. The remaining 25% of glycerol's use is distributed among various industrial uses. It is used in cough syrups and elixir medicines. In industry, glycerol is found in lubricants, plasticizers, adhesives, antifreezes, resins, and insulating foams. At one time it was used almost exclusively in its nitrated form as an explosive (see Nitroglycerin), which today accounts for about 3% of its use.


Glycerol is used both in sample preparation and gel formation for polyacrylamide gel electrophoresis. Glycerol (5-10%) increases the density of a sample so that the sample will layer at the bottom of a gel’s sample well. Glycerol is also used to aid in casting gradient gels and as a protein stabilizer and storage buffer component.


Glycerol is used both in sample preparation and gel formation for polyacrylamide gel electrophoresis. Glycerol (5-10%) increases the density of a sample so that the sample will layer at the bottom of a gel’s sample well. Glycerol is also used to aid in casting gradient gels and as a protein stabilizer and storage buffer component.


As solvent, humectant, plasticizer, emollient, sweetener, in the manufacture of nitroglycerol (dynamite), cosmetics, liquid soaps, liqueurs, confectioneries, blacking, printing and copying inks, lubricants, elastic glues, lead oxide cements; to keep fabrics pliable; to preserve printing on cotton; for printing rollers, hectographs; to keep frost from windshields; as antifreeze in automobiles, gas meters and hydraulic jacks, in shock absorber fluids. In fermentation nutrients in the production of antibiotics. Pharmaceutic aid (humectant; solvent, vehicle). Leffingwell and Lesser (op. cit.) give 1583 different uses.


glycerin (glycerol; propanetriol) is a humectant used in moisturizers. It is water-binding and able to draw and absorb water from the air, thus helping the skin retain moisture. glycerin has been studied extensively for its hydrating abilities. Based on the data available, glycerin has been established as a good skin-moisturizing agent. At least part of its activity is attributed to its facilitating enzymatic reactions in the skin, thereby promoting corneocyte desquamation. glycerin also improves the spreading qualities of creams and lotions. It is a clear, syrupy liquid made by chemically combining water and fat that is usually derived from vegetable oil. Although glycerin has not been shown to cause allergies, it may be comedogenic and irritating to the mucous membranes when used in concentrated solutions.


ChEBI: A triol with a structure of propane substituted at positions 1, 2 and 3 by hydroxy groups.

생산 방법

Glycerol is a by-product in the production of candles and soaps and was originally discardedin the production of these items. The process of converting a fat to soap is termedsaponification. The traditional method of saponification involved the use of animal fats andvegetable oils. Fats and oils are esters formed when three fatty-acid molecules attach to a singleglycerol molecule. When the three fatty acids attach to the three hydroxyl groups of the glycerol,a triglyceride is formed. During saponification of animal and plant products, hydrolysisof triglycerides converts triglycerides back to fatty acids and glycerol.the fatty acids then reactwith a base to produce a carboxylic acid salt commonly called soap.
Until 1940, the world’s demand for glycerol was supplied from natural sources throughthe production of soaps and candles. Glycerol can also be produced through the fermentationof sugar, and this process was used to increase glycerol production during World War I.Glycerol can also be produced synthetically from propylene. The synthetic production frompropylene first occurred just before World War II and commercial production started in 1943in Germany. The synthetic process begins with the chlorine substitution of one hydrogenatom of propylene to allyl chloride: H2C = CH-CH3 + Cl2 → H2C = CH-CH2Cl + HCl. Allylchloride is then treated with hypochlorous acid to produce 1,3-dichlorohydrin.

생산 방법

Glycerin is mainly obtained from oils and fats as a by-product in the manufacture of soaps and fatty acids. It may also be obtained from natural sources by fermentation of, for example, sugar beet molasses in the presence of large quantities of sodium sulfite. Synthetically, glycerin may be prepared by the chlorination and saponification of propylene.

Aroma threshold values

Greater than 20,000 ppm.

일반 설명

A colorless to brown colored liquid. Combustible but may require some effort to ignite. Residual sodium hydroxide (lye) causes crude material to be corrosive to metals and/or tissue.

공기와 물의 반응

Hygroscopic. Water soluble.

반응 프로필

GLYCERINE is incompatible with strong oxidizers. Glycerol is also incompatible with hydrogen peroxide, potassium permanganate, nitric acid + sulfuric acid, perchloric acid + lead oxide, acetic anhydride, aniline + nitrobenzene, Ca(OCl)2, CrO3, F2 + PbO, KMnO4, K2O2, AgClO4 and NaH. A mixture with chlorine explodes if heated to 158-176° F. Glycerol reacts with acetic acid, potassium peroxide, sodium peroxide, hydrochloric acid, (HClO4 + PbO) and Na2O2. Contact with potassium chlorate may be explosive. Glycerol also reacts with ethylene oxide, perchloric acid, nitric acid + hydrofluoric acid and phosphorus triiodide.


No hazard


Glycerol is combustible.


Flash Point (°F): 350 ℃, 320 ℃; Flammable Limits in Air (%): Not pertinent; Fire Extinguishing Agents: Alcohol foam, dry chemical, carbon dioxide, water fog; Fire Extinguishing Agents Not To Be Used: Water or foam may cause frothing; Special Hazards of Combustion Products: Not pertinent; Behavior in Fire: Not pertinent; Ignition Temperature (°F): 698; Electrical Hazard: Not pertinent; Burning Rate: 0.9 mm/min.

화학 반응

Reactivity with Water No reaction; Reactivity with Common Materials: No reactions; Stability During Transport: Stable; Neutralizing Agents for Acids and Caustics: Not pertinent; Polymerization: Not pertinent; Inhibitor of Polymerization: Not pertinent.

Pharmaceutical Applications

Glycerin is used in a wide variety of pharmaceutical formulations including oral, otic, ophthalmic, topical, and parenteral preparations.
In topical pharmaceutical formulations and cosmetics, glycerin is used primarily for its humectant and emollient properties. Glycerin is used as a solvent or cosolvent in creams and emulsions. Glycerin is additionally used in aqueous and nonaqueous gels and also as an additive in patch applications. In parenteral formulations, glycerin is used mainly as a solvent and cosolvent.
In oral solutions, glycerin is used as a solvent, sweetening agent, antimicrobial preservative, and viscosity-increasing agent. It is also used as a plasticizer and in film coatings.
Glycerin is used as a plasticizer of gelatin in the production of soft-gelatin capsules and gelatin suppositories.
Glycerin is employed as a therapeutic agent in a variety of clinical applications, and is also used as a food additive.

Safety Profile

Poison by subcutaneous route. Mildly toxic by ingestion. Human systemic effects by ingestion: headache and nausea or vomiting. Experimental reproductive effects. Human mutation data reported. A skin and eye irritant. In the form of mist it is a nuisance particulate and inhalation irritant. Combustible liquid when exposed to heat, flame, or powerful oxidizers. Mixtures with hydrogen peroxide are highly explosive. Ignites on contact with potassium permanganate, calcium hypochlorite. Mixture with nitric acid + sulfuric acid forms the explosive glyceql nitrate. Mixture with perchloric acid + lead oxide forms explosive perchlorate esters. Confined mixture with chlorine explodes if heated to 70-80'. Can react violently with acetic anhydride, aniline + nitrobenzene, Ca(OCl)2, Cr03,Cr203, F2 + PbO, phosphorus triiodide, ethylene oxide + heat, KMnO4, K2O2, AgClO4, Na2O2, NaH. Energetic reaction with sodium hydride. Mixture with nitric acid + hydrofluoric acid is a storage hazard due to gas evolution. To fight fire, use alcohol foam, CO2, dry chemical. When heated to decomposition it emits acrid smoke and fumes.


Glycerin occurs naturally in animal and vegetable fats and oils that are consumed as part of a normal diet. Glycerin is readily absorbed from the intestine and is either metabolized to carbon dioxide and glycogen or used in the synthesis of body fats.
Glycerin is used in a wide variety of pharmaceutical formulations including oral, ophthalmic, parenteral, and topical preparations. Adverse effects are mainly due to the dehydrating properties of glycerin.
Oral doses are demulcent and mildly laxative in action. Large doses may produce headache, thirst, nausea, and hyperglycemia. The therapeutic parenteral administration of very large glycerin doses, 70–80 g over 30–60 minutes in adults to reduce cranial pressure, may induce hemolysis, hemoglobinuria, and renal failure.( 16) Slower administration has no deleterious effects.
Glycerin may also be used orally in doses of 1.0–1.5 g/kg bodyweight to reduce intraocular pressure.
When used as an excipient or food additive, glycerin is not usually associated with any adverse effects and is generally regarded as a nontoxic and nonirritant material.
LD50 (guinea pig, oral): 7.75 g/kg
LD50 (mouse, IP): 8.70 g/kg
LD50 (mouse, IV): 4.25 g/kg
LD50 (mouse, oral): 4.1 g/kg
LD50 (mouse, SC): 0.09 g/kg
LD50 (rabbit, IV): 0.05 g/kg
LD50 (rabbit, oral): 27 g/kg
LD50 (rat, IP): 4.42 g/kg
LD50 (rat, oral): 5.57 g/kg
LD50 (rat, oral): 12.6 g/kg
LD50 (rat, SC): 0.1 g/kg

Chemical Synthesis

Obtained from oils and fats as a by-product in the manufacture of soaps and fatty acids; synthesized from propylene; also production from sugars by fermentation.

잠재적 노출

Glycerol is used as a humectant in tobacco; it is used in cosmetics, antifreezes and inks. It is used as a fiber lubricant. It is used as a raw material for alkyd resins and in explosives manufacture.


Glycerin is hygroscopic. Pure glycerin is not prone to oxidation by the atmosphere under ordinary storage conditions, but it decomposes on heating with the evolution of toxic acrolein. Mixtures of glycerin with water, ethanol (95%), and propylene glycol are chemically stable.

운송 방법

UN1760 Corrosive liquids, n.o.s., Hazard class: 8; Labels: 8-Corrosive material, Technical Name Required.

비 호환성

Able to polymerize above 300 ℉/150 ℃.Incompatible with acetic anhydrides (especially in the pres ence of a catalyst), strong acids, caustics, aliphatic amines, and isocyanates. Strong oxidizers, e.g., chromium trioxide, potassium chlorate, and potassium permanganate); can cause fire and explosion hazard. Hygroscopic (i.e., absorbs moisture from the air). Decomposes when heated, produc ing corrosive gas of acrolein.

비 호환성

Glycerin may explode if mixed with strong oxidizing agents such as chromium trioxide, potassium chlorate, or potassium permanganate. In dilute solution, the reaction proceeds at a slower rate with several oxidation products being formed. Black discoloration of glycerin occurs in the presence of light, or on contact with zinc oxide or basic bismuth nitrate.
An iron contaminant in glycerin is responsible for the darkening in color of mixtures containing phenols, salicylates, and tannin.
Glycerin forms a boric acid complex, glyceroboric acid, that is a stronger acid than boric acid.

폐기물 처리

Mixture with a more flamma ble solvent followed by incineration.

Regulatory Status

GRAS listed. Accepted for use as a food additive in Europe. Included in the FDA Inactive Ingredients Database (dental pastes; buccal preparations; inhalations; injections; nasal and ophthalmic preparations; oral capsules, solutions, suspensions and tablets; otic, rectal, topical, transdermal, and vaginal preparations). Included in nonparenteral and parenteral medicines licensed in the UK. Included in the Canadian List of Acceptable Non-medicinal Ingredients.

글리세린 준비 용품 및 원자재


준비 용품

글리세린 공급 업체

글로벌( 497)공급 업체
공급자 전화 팩스 이메일 국가 제품 수 이점
Hebei Guanlang Biotechnology Co., Ltd.
+86-0311-66562153 whatsapp +8615203118427
+86-0311-66562153 CHINA 406 50
Capot Chemical Co.,Ltd.
+86 (0)571-855 867 18
+86 (0)571-858 647 95 China 19918 60
Shenzhen Sendi Biotechnology Co.Ltd.
0755-23311925 18102838259
0755-23311925 CHINA 3203 55
Henan DaKen Chemical CO.,LTD.
+86-371-55531817 CHINA 21957 58
Henan Tianfu Chemical Co.,Ltd.
0371-55170693 CHINA 20676 55
Mainchem Co., Ltd.
+86-0592-6210733 CHINA 32452 55
Hefei TNJ Chemical Industry Co.,Ltd.
86-0551-65418684 18949823763
86-0551-65418684 China 1772 55
Xiamen AmoyChem Co., Ltd
+86 (0)592-605 1114 CHINA 6374 58
Yancheng Green Chemicals Co.,Ltd
86-515-87883652 CHINA 349 58
Shanghai Zheyan Biotech Co., Ltd.
18017610038 CHINA 3623 58

글리세린 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved