ChemicalBook
Chinese English Japanese Germany Korea

벤즈알데하이드

벤즈알데하이드
벤즈알데하이드 구조식 이미지
카스 번호:
100-52-7
한글명:
벤즈알데하이드
동의어(한글):
벤즈알데히드;벤젠메틸알;벤젠카르보날;벤젠카르복시알데히드BENZOICALDEHYDE;인조아몬드기름;페닐메탄알;벤즈알데하이드;인공아몬드기름;인공아몬드기름;벤젠카르보날;페닐메탄알;벤젠메틸알;인조아몬드기름;벤젠;벤젠카르복스알데히드;벤조산 알데히드;벤즈알데히드 FFC;인공 아몬드유;페닐메타날;페닐포름알데히드
상품명:
Benzaldehyde
동의어(영문):
BALD;NA 1989;FEMA 2127;NCI-C56133;Benaldehyde;Benzaldehyd;BENZALDEHYDE;Benzyaldehyde;BENZALADEHYDE;Benzoylhydride
CBNumber:
CB6852588
분자식:
C7H6O
포뮬러 무게:
106.12
MOL 파일:
100-52-7.mol

벤즈알데하이드 속성

녹는점
-26 °C
끓는 점
179 °C
밀도
1.044 g/cm 3 at 20 °C(lit.)
증기 밀도
3.7 (vs air)
증기압
4 mm Hg ( 45 °C)
굴절률
n20/D 1.545(lit.)
FEMA
2127 | BENZALDEHYDE
인화점
145 °F
저장 조건
room temp
용해도
H2O: soluble100mg/mL
산도 계수 (pKa)
14.90(at 25℃)
물리적 상태
neat
색상
Pale yellow
냄새
Like almonds.
수소이온지수(pH)
5.9 (1g/l, H2O)
pH 범위
5.9
폭발한계
1.4-8.5%(V)
수용성
<0.01 g/100 mL at 19.5 ºC
어는점
-56℃
감도
Air Sensitive
Merck
14,1058
JECFA Number
22
BRN
471223
안정성
Stable. Combustible. Incompatible with strong oxidizing agents, strong acids, reducing agents, steam. Air, light and moisture-sensitive.
InChIKey
HUMNYLRZRPPJDN-UHFFFAOYSA-N
CAS 데이터베이스
100-52-7(CAS DataBase Reference)
NIST
Benzaldehyde(100-52-7)
EPA
Benzaldehyde (100-52-7)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 Xn
위험 카페고리 넘버 22
안전지침서 24
유엔번호(UN No.) UN 1990 9/PG 3
WGK 독일 1
RTECS 번호 CU4375000
F 고인화성물질 8
자연 발화 온도 374 °F
TSCA Yes
HS 번호 2912 21 00
위험 등급 9
포장분류 III
유해 물질 데이터 100-52-7(Hazardous Substances Data)
독성 LD50 in rats, guinea pigs (mg/kg): 1300, 1000 orally (Jenner)
기존화학 물질 KE-02713
그림문자(GHS):
신호 어: Warning
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H227 가연성 액체 인화성 액체 구분 4 경고 P210, P280, P370+P378, P403+P235,P501
H302 삼키면 유해함 급성 독성 물질 - 경구 구분 4 경고 P264, P270, P301+P312, P330, P501
H315 피부에 자극을 일으킴 피부부식성 또는 자극성물질 구분 2 경고 P264, P280, P302+P352, P321,P332+P313, P362
H317 알레르기성 피부 반응을 일으킬 수 있음 피부 과민성 물질 구분 1 경고 P261, P272, P280, P302+P352,P333+P313, P321, P363, P501
H320 눈에 자극을 일으킴 심한 눈 손상 또는 자극성 물질 구분 2B 경고 P264, P305+P351+P338,P337+P313
H335 호흡 자극성을 일으킬 수 있음 특정 표적장기 독성 - 1회 노출;호흡기계 자극 구분 3 경고
H336 졸음 또는 현기증을 일으킬 수 있음 특정표적장기 독성 물질(1회 노출);마취작용 구분 3 경고 P261, P271, P304+P340, P312,P403+P233, P405, P501
H341 유전적인 결함을 일으킬 것으로 의심됨 (노출되어도 생식세포 유전독성을 일으키지 않는다는 결정적인 증거가 있는 노출경로가 있다면 노출경로 기재) 생식세포 변이원성 물질 구분 2 경고 P201,P202, P281, P308+P313, P405,P501
H371 장기(또는, 영향을 받은 알려진 모든 장기를 명시)에 손상을 일으킬 수 있음(노출되어도 특정 표적장기 독성을 일으키지 않는다는 결정적인 노출경로가 있다면 노출경로를 기재) 특정 표적장기 독성 - 2회 노출 구분 2 경고 P260, P264, P270, P309+P311, P405,P501
H401 수생생물에 유독함 수생 환경유해성 물질 - 급성 구분 2 P273, P501
예방조치문구:
P201 사용 전 취급 설명서를 확보하시오.
P202 모든 안전 조치 문구를 읽고 이해하기 전에는 취급하지 마시오.
P210 열·스파크·화염·고열로부터 멀리하시오 - 금연 하시오.
P260 분진·흄·가스·미스트·증기·...·스프레이를 흡입하지 마시오.
P262 눈, 피부, 의복에 묻지 않도록 하시오.
P264 취급 후에는 손을 철저히 씻으시오.
P264 취급 후에는 손을 철저히 씻으시오.
P270 이 제품을 사용할 때에는 먹거나, 마시거나 흡연하지 마시오.
P271 옥외 또는 환기가 잘 되는 곳에서만 취급하시오.
P272 작업장 밖으로 오염된 의복을 반출하지 마시오.
P273 환경으로 배출하지 마시오.
P280 보호장갑/보호의/보안경/안면보호구를 착용하시오.
P370+P378 화재 시 불을 끄기 위해 (Section 5. 폭발, 화재시 대처방법의 적절한 소화제)을(를) 사용하시오.
P405 밀봉하여 저장하시오.
P403+P233 용기는 환기가 잘 되는 곳에 단단히 밀폐하여 저장하시오.
P501 ...에 내용물 / 용기를 폐기 하시오.
NFPA 704
2
2 0

벤즈알데하이드 MSDS


Benzaldehyde

벤즈알데하이드 C화학적 특성, 용도, 생산

물성

산화하기 쉽고, 공기 속에서 쉽게 벤조산이 되므로, 오랫동안 보존할 때는 주의를 요한다. 산화에 의하여 생긴 벤조산은 벤즈알데하이드에 녹지 않으므로 표면에 막 모양의 물질이 되어 위로 뜬다. 또 수산화알칼리의 작용으로 벤조산과 벤질알코올로, 환원시키면 벤질알코올이 된다.

개요

벤즈알데하이드(Benzaldehyde, C7H6O)는 가장 간단한 방향족 알데하이드다. 고편도유의 성분 중 하나이다.요약 방향족 알데하이드 중의 가장 간단한 것으로 특수한 향내가 나는 무색의 액체이다. 공기 중에서 쉽게 산화하여 벤조산이 되므로 보존에 주의해야 하며, 비교적 값싼 향료로서 많이 사용되고 있다.

용도

비교적 값싼 향료로서 비누·화장품 등에 다량으로 사용되며, 또한 고편도유의 대용으로도 사용된다.

화학적 성질

Benzaldehyde is a colorless to yellow, oily liquid with an odor of bitter almonds. Benzaldehyde is commercially available in two grades: (i) pure benzaldehyde and (ii) and double-distilled benzaldehyde. The latter has applications in the pharmaceutical, perfume, and fl avor industries. Benzaldehyde may contain trace amounts of chlorine, water, benzoic acid, benzyl chloride, benzyl alcohol, and/or nitrobenzene. Benzaldehyde is ignited relatively easily on contact with hot surfaces. This has been attributed to the property of very low auto-ignition temperature. Benzaldehyde also undergoes autoxidation in air and is liable to self-heat. Benzaldehyde exists in nature, occurring in combined and uncombined forms in many plants. Benzaldehyde is also the main constituent of the essential oils obtained by pressing the kernels of peaches, cherries, apricots, and other fruits. Benzaldehyde is released into the environment in emissions from combustion processes, such as gasoline and diesel engines, incinerators, and wood burning. It is formed in the atmosphere through photochemical oxidation of toluene and other aromatic hydrocarbons. Benzaldehyde is corrosive to gray and ductile cast iron (10% solution), and all concentrations of lead. However, pure benzaldehyde is not corrosive to cast iron. Benzaldehyde does not attack most of the common metals, like stainless steels, aluminum, aluminum bronze, nickel and nickel-base alloys, bronze, naval brass, tantalum, titanium, and zirconium. On decomposition, benzaldehyde releases peroxybenzoic acid and benzoic acidBenzaldehyde is used in perfumes, soaps, foods, drinks, and other products; as a solvent for oils, resins, some cellulose ethers, cellulose acetate, and cellulose nitrate. The uses of benzaldehyde in industries are extensive. For instance, in the production of derivatives that are employed in the perfume and fl avor industries, like cinnamaldehyde, cinnamyl alcohol, cinnamic acid, benzylacetone, and benzyl benzoate, in the production of triphenylmethane dyes and the acridine dye, benzofl avin; as an intermediate in the pharmaceutical industry, for instance, to make chloramphenicol, ephedrin, and ampicillin, as an intermediate to make benzoin, benzylamine, benzyl alcohol, mandelic acid, and 4-phenyl-3-buten-2-one (benzylideneacetone), in photochemistry, as a corrosion inhibitor and dyeing auxiliary, in the electroplating industry, and in the production of agricultural chemicals

출처

Present as cyanuric glucoside (amygdalin) in bitter almond, peach, apricot kernel and other Prunus species; amygdalin is also present in various parts of the following plants: Sambucus nigra, Chrysophyllum arlen, Anacyclus officinarnm, Anacyclus pedunculatus, Davallia brasiliensis, Lacuma deliciosa, Lacuma multiflora and others; free benzaldehyde has been reported found in several essential oils: hyacinth, citronella, orris, cinnamon, sassafras, labdanum and patchouli. Reported found in strawberry jam, leek (raw) (Allium porrum L.), crispbread, Camembert, Gruyere de Comte, provolone cheeses, black tea, salted and pickled plum, cooked trassi, Bantu beer, red sage (Texas sage) (S. coccinea Juss. Ex Murr.), arrack, scallop, hog plum (Spondias mombins L.), chekur (Alpinia sessilis Kon. = Kaemferia galanga) and other natural sources.

용도

Benzaldehyde is used as an intermediatein the production of flavoring chemicals,such as cinnamaldehyde, cinnamalalcohol,and amyl- and hexylcinnamaldehyde for perfume,soap, and food flavor; synthetic penicillin,ampicillin, and ephedrine; and as araw material for the herbicide Avenge. Itoccurs in nature in the seeds of almonds,apricots, cherries, and peaches. It occurs intrace amounts in corn oil.

용도

Benzaldehyde is a flavoring agent which is liquid and colorless, and has an almond-like odor. it has a hot (burning) taste. it is oxidized to benzoic acid when exposed to air and deteriorates under light. it is miscible in volatile oils, fixed oils, ether, and alcohol; it is spar- ingly soluble in water. it is obtained by chemical synthesis and by natural occurrence in oils of bitter almond, peach, and apricot kernel. it is also termed benzoic aldehyde.

용도

Manufacture of dyes, perfumery, cinnamic and mandelic acids, as solvent; in flavors.

제조 방법

Benzaldehyde is prepared by hydrolysis of benzal chloride, for example, in acidic media in the presence of a catalyst such as ferric chloride or in alkaline media with aqueous sodium carbonate. Part of the commercially available benzaldehyde originates from a technical process for phenol. In this process, benzaldehyde is a by-product in the oxidation, in air, of toluene to benzoic acid.

정의

A yellow organic oil with a distinct almondlike odor. Benzenecarbaldehyde undergoes the reactions characteristic of aldehydes and may be synthesized in the laboratory by the usual methods of aldehyde synthesis. It is used as a food flavoring and in the manufacture of dyes and antibiotics, and can be readily manufactured by the chlorination of methylbenzene and the subsequent hydrolysis of (dichloromethyl) benzene: C6H5CH3 + Cl2 →C6H5CHCl2 C6H5CHCl2 + 2H2O →C6H5CH(OH)2+ 2HCl C6H5CH(OH)2 →C6H5CHO + H2O.

화학 반응

Benzaldehyde reacts with many chemicals in a marked manner: (1) with ammonio-silver nitrate (“Tollen’s solution”) to form metallic silver, either as a black precipitate or as an adherent mirror film on glass (but does not reduce alkaline cupric solution, “Fehling’s solution”); (2) with rosaniline (fuchsine, magenta) that has been decolorized by sulfurous acid (“Schiff’s solution”), restoring the pink color of rosaniline; (3) with NaOH solution, yielding benzyl alcohol and sodium benzoate; (4) with NH4OH, yielding tribenzaldeamine (hydrobenzamide, (C6H5CH)3N2), white solid, mp 101 °C, (5) with aniline, yielding benzylideneaniline (“Schiff’s base” C6H5CH:NC6H5); (6) with sodium cyanide in alcohol, yielding benzoin C6H5·CHOHCOC6H5, white solid, mp 133 °C; (7) with hydroxylamine hydrochloride, yielding benzaldoximes C6H5CH:NOH, white solids, antioxime, mp 35 °C, syn-oxime, mp 130 °C; (8) with phenylhydrazine, yields benzaldehyde phenylhydrazone C6H5CH:NNHC6H5, pink solid, mp 156 °C; (9) with concentrated HNO3, yields metanitrobenzaldehyde NO2·C6H4CHO, white solid, mp 58 °C; (10) with concentrated H2SO4 yields metabenzaldehyde sulfonic acid C6H4CHO (SO3H)2, (11) with anhydrous sodium acetate and acetic anhydride at 180 °C, yielding sodium benzoate C6H5CHOONa (12) with sodium hydrogen sulfite, forming benzaldehyde sodium bisulfite C6H5CHOHSO3Na, a white solid, from which benzaldehyde is readily recoverable by treatment with sodium carbonate solution; (13) with acetaldehyde made slightly alkaline with NaOH, yielding cinnamic aldehyde C6H5CH:CHCHO, (14) with phosphorus pentachloride, yielding benzylidine chloride C6H5CHCl2.

Aroma threshold values

Detection: 100 ppb to 4.6 ppm; Recognition: 330 ppb to 4.1 ppm.

Taste threshold values

Taste characteristics at 50 ppm: sweet, oily, almond, cherry, nutty and woody

Synthesis Reference(s)

Chemical and Pharmaceutical Bulletin, 12, p. 403, 1964
The Journal of Organic Chemistry, 58, p. 4732, 1993 DOI: 10.1021/jo00069a043
Synthetic Communications, 16, p. 43, 1986 DOI: 10.1080/00397918608057686

일반 설명

A clear colorless to yellow liquid with a bitter almond odor. Flash point near 145°F. More denser than water and insoluble in water. Hence sinks in water. Vapors are heavier than air. The primary hazard is to the environment. Immediate steps should be taken to limit spread to the environment. Easily penetrates the soil to contaminate groundwater and nearby waterways. Used in flavoring and perfume making.

공기와 물의 반응

Oxidizes in air to form benzoic acid, which is moderately toxic by ingestion. Insoluble in water.

반응 프로필

A nontoxic, combustible liquid, reacts with oxidizing reagents. Benzaldehyde must be blanketed with an inert gas at all times since Benzaldehyde is oxidized readily by air to benzoic acid [Kirk-Othmer, 3rd ed., Vol. 3, 1978, p. 736]. In contact with strong acids or bases Benzaldehyde will undergo an exothermic condensation reaction [Sax, 9th ed., 1996, p. 327]. A violent reaction was observed on contact with peroxyacids (peroxyformic acid) [DiAns, J. et al., Ber., 1915, 48, p. 1136]. An explosion occurred when pyrrolidine, Benzaldehyde, and propionic acid were heated to form porphyrins.

위험도

Highly toxic.

건강위험

Benzaldehyde exhibited low to moderate toxicityin test animals, the poisoning effectdepending on dosage. Ingestion of 50–60 mLmay be fatal to humans. Oral intake of a largedose can cause tremor, gastrointestinal pain,and kidney damage. Animal experimentsindicated that ingestion of this compoundby guinea pigs caused tremor, bleeding fromsmall intestine, and an increase in urine volume;in rats, ingestion resulted in somnolenceand coma.
LD50 value, oral (guinea pigs): 1000 mg/kg
LD50 value, oral (rats): 1300 mg/kg
A 500-mg amount for a 24-hour periodresulted in moderate skin irritation in rabbits.Because of its low toxicity, high boilingpoint, and low vapor pressure, the healthhazard to humans from exposure to benzaldehydeis very low.

화재위험

HIGHLY FLAMMABLE: Will be easily ignited by heat, sparks or flames. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back. Most vapors are heavier than air. They will spread along ground and collect in low or confined areas (sewers, basements, tanks). Vapor explosion hazard indoors, outdoors or in sewers. Runoff to sewer may create fire or explosion hazard. Containers may explode when heated. Many liquids are lighter than water.

화학 반응

Reactivity with Water: No reaction; Reactivity with Common Materials: No reactions; Stability During Transport: Stable; Neutralizing Agents for Acids and Caustics: Not pertinent; Polymerization: Not pertinent; Inhibitor of Polymerization: Not pertinent.

Pharmacology

Benzaldehyde significantly inhibited peptic activity in artificial gastric juice in vitro (20-45% inhibition) and in vivo to the extent of 87% in normal healthy persons and ulcer patients (Kleeberg, 1959). As a freshly prepared 1:500 solution, it exerted a marked antispasmodic effect, relaxing the tonus and inhibiting contractions of various isolated smooth muscles of dog, cat, rat, rabbit, mouse, guinea-pig, pig and frog and of a few human tissues. Injected into rabbits and other animals it produced a marked relaxation of the intestines and urinary bladder and marked vasodilation of the splanchnic vessel. Injection of 4 ml of a 5% solution iv into a cat caused a fall in blood pressure and slowing of respiration. In dogs, 1 ml injected iv or sc or 2 ml/kg given orally produced only a slight slowing of respiration. Injection of larger doses iv produced only a drop in blood pressure, slight slowing of respiration and inhibition of intestinal contractions, with vasodilation of the splanchnic vessel. In rabbits, iv injection of 20 ml of a 0-2% solution did not produce dangerous results. Large injected doses of benzaldehyde exert their mosjt important toxic effects on the medulla, with slowing or paralysis of respiration. In the intact animal, the heart is very little affected; but benzaldehyde acts as a muscular depressant on isolated frog heart (Macht, 1922). Treatment of isolated rat striated muscle for 1-5 min with 30 mM-benzaldehyde increased the rate of propagation of contractures and the rate of structural breakdown of injured striated muscle fibres. After more prolonged application (for 30 min), the rapid propagation of contracture continued but the structural breakdown was inhibited (Busing, 1972).
Benzaldehyde possessed definite local anaesthetic properties in the sciatic nerves of cats, dogs and frogs, in the eyes of rabbits and dogs (accompanied by irritation) and in the skin of frogs, but was considered unsuitable for practical use because of its rapid oxidation to benzoic acid (Macht, 1922).
In a study of the toxic effects of cherry laurel water on mice and on isolated rat intestine, benzaldehyde was found to aid in the detoxication of HCN by the formation of C6H5?CH(OH)?CN (Lanza & Conte, 1964).
Benzaldehyde did not act as a cross-linking (tanning) agent for corium and aorta, since in a 015 M solution it did not increase the observed in vitro hydrothermal shrinkage temperatures of goat skin and human, bovine and canine aortae (Milch, 1965).
The intestinal absorption-rate coefficients of benzaldehyde and related compounds were determined by perfusion of aqueous solutions through the small intestines of anaesthetized rats (Nogami, Hanano & Yamada, 1968).
No changes in gastric motor patterns, including gastric motility, were observed in rats after inhalation of "toxic levels" (not specified) of benzaldehyde from a liquid sample placed in a test chamber using recirculated air, or from a saturated paper applied to the trachea (Roth & Tansy, 1972).
Benzaldehyde in a concentration of 0-1 mmol/litre caused a 16% depression of the frequency of electric-organ discharge in the mormyrid electric fish Gnathonemus moori (Walsh & Schopp, 1966).

Safety Profile

Poison by ingestion and intraperitoneal routes. Moderately toxic by subcutaneous route. An allergen. Acts as a feeble local anesthetic. Local contact may cause contact dermatitis. Causes central nervous system depression in small doses and convulsions in larger doses. A skin irritant. Questionable carcinogen with experimental tumorigenic data. Mutation data reported. Combustible liquid. To fight fire, use water (may be used as a blanket), alcohol, foam, dry chemical. A strong reducing agent. Reacts violently with peroxyformic acid and other oxidizers. See also ALDEHYDES.

Chemical Synthesis

Natural benzaldehyde is obtained by extraction and subsequent fractional distillation from botanical sources; synthetically, from benzyl chloride and lime or by oxidation of toluene

잠재적 노출

In manufacture of perfumes, dyes, and cinnamic acid; as solvent; in flavors.

신진 대사

Benzaldehyde was among 300 volatile constituents detected in the urine of ten adults . It is commonly converted to hippuric acid in vivo. In the rabbit and dog, hippuric acid appears to be the only metabolite there being practically no formation of benzoyl glucuronide. The conversion of benzaldehyde to benzoic acid in the rabbit follows first-order reaction kinetics

저장

Benzaldehyde should be kept stored in a tightly closed container and protected against physical damage. Storage of the chemical substance outside or in a detached area is preferred, whereas inside storage should be in a standard flammable liquids storage room or cabinet. Benzaldehyde should be kept separated from oxidizing materials. Also, storage and use areas should be no smoking areas. Containers of this material may be hazardous when empty since they retain product residues (vapors, liquid); observe all warnings and precautions listed for the product

운송 방법

UN1990 Benzaldehyde, Hazard class: 9; Labels: 9—Miscellaneous hazardous material.

Purification Methods

To diminish its rate of oxidation, benzaldehyde usually contains additives such as hydroquinone or catechol. It can be purified via its bisulfite addition compound but usually distillation (under nitrogen at reduced pressure) is sufficient. Prior to distillation it is washed with NaOH or 10% Na2CO3 (until no more CO2 is evolved), then with saturated Na2SO3 and H2O, followed by drying with CaSO4, MgSO4 or CaCl2. [Beilstein 7 IV 505.]

비 호환성

The substance reacts with air, forming explosive peroxides. Reacts violently with performic acid, oxidants, aluminum, iron, bases, and phenol, causing fire and explosion hazard. May self-ignite if absorbed in combustible material with large surface area, or otherwise dispersed over large areas. Reacts with rust, amines, alkalies, strong bases, reducing agents such as hydrideds and active metals.

폐기물 처리

Incineration; add combustible solvent and spray into incinerator with afterburner.

주의 사항

Workers should be careful when using benzaldehyde because there is a risk of spontaneous combustion. It may ignite spontaneously if it is absorbed onto rags, cleaning cloths, clothing, sawdust, diatomaceous earth (kieselguhr), activated charcoal, or other materials with large surface areas in workplaces. Workers should avoid handling the chemical substance and should not cut, puncture, or weld on or near the container. Exposure of benzaldehyde to air, light, heat, hot surfaces such as hot pipes, sparks, open flames, and other ignition sources should be avoided. Workers should wear proper personal protective clothing and equipment

벤즈알데하이드 준비 용품 및 원자재

원자재

준비 용품


벤즈알데하이드 공급 업체

글로벌( 530)공급 업체
공급자 전화 팩스 이메일 국가 제품 수 이점
Hefei TNJ Chemical Industry Co.,Ltd.
86-0551-65418684 18949823763
86-0551-65418684 info@tnjchem.com China 2754 55
Shijiazhuang Suking Biotechnology Co .,Ltd.
18732196011
18732196011 sales2@sxbiology.com CHINA 382 58
Wuhan ChemNorm Biotech Co.,Ltd.
18971486879 +86-27-8439 4403
+86-27-8439 4403 sales@chemnorm.com CHINA 2793 58
Frapp's ChemicalNFTZ Co., Ltd.
+86 (576) 8169-6106
+86 (576) 8169-6105 sales@frappschem.com China 886 50
Shanghai Bojing Chemical Co.,Ltd.
+86-21-37122233
+86-21-37127788 Candy@bj-chem.com CHINA 497 55
Henan Tianfu Chemical Co.,Ltd.
0371-55170693
0371-55170693 info@tianfuchem.com CHINA 22624 55
Anhui Royal Chemical Co., Ltd.
+86-025-86655873
marketing@royal-chem.com CHINA 537 55
Hebei Chishuo Biotechnology Co., Ltd.
13292891350 +86 311 66567340
luna@speedgainpharma.com CHINA 1005 58
Shanghai Zheyan Biotech Co., Ltd.
18017610038
zheyansh@163.com CHINA 3623 58
career henan chemical co
+86-371-86658258
sales@coreychem.com CHINA 30039 58

벤즈알데하이드 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved