ChemicalBook
Chinese English Japanese Germany Korea

폴리아크릴산

폴리아크릴산
폴리아크릴산 구조식 이미지
카스 번호:
9003-01-4
한글명:
폴리아크릴산
동의어(한글):
폴리아크릴산;폴리아크릴산(POLYACRYLICACID);카보머;폴리아크릴릭애씨드
상품명:
Poly(acrylic acid)
동의어(영문):
mw;940;xpa;PAA;934;aron;p11h;r968;0mw);ws24
CBNumber:
CB8708560
분자식:
C5H10O2
포뮬러 무게:
102.1317
MOL 파일:
9003-01-4.mol

폴리아크릴산 속성

녹는점
95 °C
끓는 점
116 °C
밀도
1.2 g/mL at 25 °C
굴절률
n20/D 1.442
인화점
100 °C
저장 조건
2-8°C
용해도
Swellable in water and glycerin and, after neutralization, in ethanol (95%). Carbomers do not dissolve but merely swell to a remarkable extent, since they are three-dimensionally crosslinked microgels.
물리적 상태
Powder
색상
White
수용성
Soluble in water.
InChIKey
WLAMNBDJUVNPJU-UHFFFAOYSA-N
IARC
3 (Vol. 19, Sup 7) 1987
EPA
Polyacrylic acid (9003-01-4)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 C,T,Xi
위험 카페고리 넘버 45-46-34-36/37/38
안전지침서 53-45-36-27-26
WGK 독일 1
RTECS 번호 AT4680000
TSCA Yes
HS 번호 39069090
유해 물질 데이터 9003-01-4(Hazardous Substances Data)
독성 LD50 oral in rat: 2500mg/kg
기존화학 물질 KE-28833
그림문자(GHS):
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H340 유전적인 결함을 일으킬 수 있음 (노출되어도 생식세포 유전독성을 일으키지 않는다는 결정적인 증거가 있는 노출경로가 있다면 노출경로 기재) 생식세포 변이원성 물질 구분 1A, 1B 위험
H350 암을 일으킬 수 있음 (노출되어도 암을 일으키지 않는다는 결정적인 증거가 있는 노출경로가 있다면 노출경로 기재) 발암성 물질 구분 1A, 1B 위험
예방조치문구:
P201 사용 전 취급 설명서를 확보하시오.
P308+P313 노출 또는 접촉이 우려되면 의학적인 조치· 조언를 구하시오.

폴리아크릴산 MSDS


2-Propenoic acid homopolymer

폴리아크릴산 C화학적 특성, 용도, 생산

개요

Acrylic resins are a group of related thermoplastic or thermosetting plastic substances derived from acrylic acid, methacrylic acid or other related compounds.[1] Polymethyl acrylate is an acrylic resin used in an emulsed form for lacquer, textile finishes, adhesives and, mixed with clay, to gloss paper. Another acrylic resin is polymethyl methacrylate which is used to make hard plastics with various light transmitting properties.

개요

For a description of unrelated compounds expanded by twocarbon units,Poly acrylic acid (PAA or Carbomer) is generic name for synthetic high molecular weight polymers of acrylic acid. They may be homopolymers of acrylic acid, crosslinked with an allyl ether pentaerythritol, allyl ether of sucrose or allyl ether of propylene. In a water solution at neutral pH, PAA is an anionic polymer, i.e. many of the side chains of PAA will lose their protons and acquire a negative charge. This makes PAAs polyelectrolytes, with the ability to absorb and retain water and swell to many times their original volume. Dry PAAs are found in the market as white and fluffy powders. Carbomer codes (910, 934, 940, 941 and 934P) are an indication of molecular weight and the specific components of the polymer. For many applications PAAs are used in form of alkali metal or amonium salts e.g. sodium polyacrylate.

화학적 성질

white powder

화학적 성질

Carbomers are white-colored, ‘fluffy’, acidic, hygroscopic powders with a characteristic slight odor. A granular carbomer is also available (Carbopol 71G).

용도

carboxypolymethylene is a binder, film-former and emulsion stabilizer. It can also help increase product viscosity.

용도

Applications of PAA may include: · to study solute diffusion in Polyvinyl alcohol/PAA copolymer hydrogel · synthesizing poly(N-isopropylacrylamide)-block-PAA copolymer which responds to both temperature and pH stimuli · in preparing block copolymer of oligo (methyl methacrylate)/PAA for micellar delivery of hydrophobic drugs · as thickening agent for adhesives

정의

ChEBI: An acrylic macromolecule, composed of acrylic acid repeating units.

주요 응용

Poly acrylic acid and its derivatives are used in disposable diapers,ion exchange resins and adhesives. They are also popular as a thickening, dispersing, suspending and emulsifying agents in pharmaceuticals, cosmetics and paints. PAA inactivates the antiseptic chlorhexidine gluconate.

생산 방법

Carbomers are synthetic, high-molecular-weight, crosslinked polymers of acrylic acid. These acrylic acid polymers are crosslinked with allyl sucrose or allyl pentaerythritol. The polymerization solvent used previously was benzene; however, some of the newer commercially available grades of carbomer are manufactured using either ethyl acetate or a cyclohexane–ethyl acetate cosolvent mixture. The Carbopol ETD and Carbopol Ultrez polymers are produced in the cosolvent mixture with a proprietary polymerization aid.

상표명

Carbopol 934 (Noveon).

Pharmaceutical Applications

Carbomers are used in liquid or semisolid pharmaceutical formulations as rheology modifiers. Formulations include creams, gels, lotions and ointments for use in ophthalmic, rectal, topical and vaginal preparations. Carbomer grades with residual benzene content greater than 2 ppm do not meet the specifications of the PhEur 6.4 monograph. However, carbomer having low residuals of other solvents than the ICH-defined ‘Class I OVI solvents’ may be used in Europe. Carbomer having low residuals of ethyl acetate, such as Carbopol 971P NF or Carbopol 974P NF, may be used in oral preparations, in suspensions, capsules or tablets. In tablet formulations, carbomers are used as controlled release agents and/or as binders. In contrast to linear polymers, higher viscosity does not result in slower drug release with carbomers. Lightly crosslinked carbomers (lower viscosity) are generally more efficient in controlling drug release than highly crosslinked carbomers (higher viscosity). In wet granulation processes, water, solvents or their mixtures can be used as the granulating fluid. The tackiness of the wet mass may be reduced by including talc in the formulation or by adding certain cationic species to the granulating fluid. However, the presence of cationic salts may accelerate drug release rates and reduce bioadhesive properties. Carbomer polymers have also been investigated in the preparation of sustained-release matrix beads, as enzyme inhibitors of intestinal proteases in peptide-containing dosage forms, as a bioadhesive for a cervical patch and for intranasally administered microspheres, in magnetic granules for site-specific drug delivery to the esophagus, and in oral mucoadhesive controlled drug delivery systems. Carbomers copolymers are also employed as emulsifying agents in the preparation of oil-in-water emulsions for external administration. Carbomer 951 has been investigated as a viscosity-increasing aid in the preparation of multiple emulsion microspheres. Carbomers are also used in cosmetics. Therapeutically, carbomer formulations have proved efficacious in improving symptoms of moderate-to-severe dry eye syndrome.

Safety

Carbomers are used extensively in nonparenteral products, particularly topical liquid and semisolid preparations. Grades polymerized in ethyl acetate may also be used in oral formulations. There is no evidence of systemic absorption of carbomer polymers following oral administration. Acute oral toxicity studies in animals indicate that carbomer 934P has a low oral toxicity, with doses up to 8 g/kg being administered to dogs without fatalities occurring. Carbomers are generally regarded as essentially nontoxic and nonirritant materials; there is no evidence in humans of hypersensitivity reactions to carbomers used topically.
LD50 (guinea pig, oral): 2.5 g/kg for carbomer 934
LD50 (guinea pig, oral): 2.5 g/kg for carbomer 934P
LD50 (guinea pig, oral): 2.5 g/kg for carbomer 940
LD50 (mouse, IP): 0.04 g/kg for carbomer 934P
LD50 (mouse, IP): 0.04 g/kg for carbomer 940
LD50 (mouse, IV): 0.07 g/kg for carbomer 934P
LD50 (mouse, IV): 0.07 g/kg for carbomer 940
LD50 (mouse, oral): 4.6 g/kg for carbomer 934P
LD50 (mouse, oral): 4.6 g/kg for carbomer 934
LD50 (mouse, oral): 4.6 g/kg for carbomer 940
LD50 (rat, oral): 10.25 g/kg for carbomer 910
LD50 (rat, oral): 2.5 g/kg for carbomer 934P
LD50 (rat, oral): 4.1 g/kg for carbomer 934
LD50 (rat, oral): 2.5 g/kg for carbomer 940
LD50 (rat, oral): > 1g/kg for carbomer 941
No observed adverse effect level (NOAEL) (rat, dog, oral): 1.5 g/kg for carbomer homopolymer type B.

저장

Carbomers are stable, hygroscopic materials that may be heated at temperatures below 1048℃ for up to 2 hours without affecting their thickening efficiency. However, exposure to excessive temperatures can result in discoloration and reduced stability. Complete decomposition occurs with heating for 30 minutes at 2608℃. Dry powder forms of carbomer do not support the growth of molds and fungi. In contrast, microorganisms grow well in unpreserved aqueous dispersions, and therefore an antimicrobial preservative such as 0.1% w/v chlorocresol, 0.18% w/v methylparaben–0.02% w/v propylparaben, or 0.1% w/v thimerosal should be added. The addition of certain antimicrobials, such as benzalkonium chloride or sodium benzoate, in high concentrations (0.1% w/v) can cause cloudiness and a reduction in viscosity of carbomer dispersions. Aqueous gels may be sterilized by autoclaving with minimal changes in viscosity or pH, provided care is taken to exclude oxygen from the system, or by gamma irradiation, although this technique may increase the viscosity of the formulation. At room temperature, carbomer dispersions maintain their viscosity during storage for prolonged periods. Similarly, dispersion viscosity is maintained, or only slightly reduced, at elevated storage temperatures if an antioxidant is included in the formulation or if the dispersion is stored protected from light. Exposure to light causes oxidation that is reflected in a decrease in dispersion viscosity. Stability to light may be improved by the addition of 0.05–0.1% w/v of a water-soluble UV absorber such as benzophenone-2 or benzophenone-4 in combination with 0.05–0.1% w/v edetic acid.
Carbomer powder should be stored in an airtight, corrosionresistant container and protected from moisture. The use of glass, plastic, or resin-lined containers is recommended for the storage of formulations containing carbomer.

Advantages

The advantages of acrylic resins are :
Better stain protection (wash ability)
Water resistance
Better adhesion
Better blocking ('strap down')
Resist cracking and blistering better
Resistance to alkali cleaners.

Current market and forecast

The global demand on acrylic resin approached roughly US $ 14.5 billion in 2011. With an annual growth rate of 4 - 5 % , the acrylic resin market is expected to reach US $ 16.6 billion by 2014 and US$22 billion by 2020. Acrylic resins are used in a wide range of applications for the outstanding chemical characteristics and unique aesthetic properties. Currently, the strongest demand comes from automotive and medical device markets, and paints & coatings, adhesive & sealant and construction & architecture are the major application markets for acrylic resin.

Formulae

Acrylic resin is a general term for any one of the plastics (resin) generated through chemical reaction by applying polymerization initiator and heat to a monomer.
The chemical name for the resin produced from the methyl methacrylate monomer (MMA) is polymethyl methacrylate (PMMA). MMA is a transparent and colorless fluid substance.One of the main characteristic features of PMMA is its high transparency. With its high weather resistance, it has been known to last over 30 years, it does not easily turn yellow or crumble when exposed to sunlight. Polymethyl methacrylate is used not only for transparent windows in aquariums but also for various items such as signboards in places like convenience stores, taillights of automobiles, bathtub liners, sinks, cell phone display screens, backlight optical waveguides for liquid crystal displays (LCD) and so on.

비 호환성

Carbomers are discolored by resorcinol and are incompatible with phenol, cationic polymers, strong acids, and high levels of electrolytes. Certain antimicrobial adjuvants should also be avoided or used at low levels. Trace levels of iron and other transition metals can catalytically degrade carbomer dispersions.
Certain amino-functional actives form complexes with carbomer; often this can be prevented by adjusting the pH of the dispersion and/or the solubility parameter by using appropriate alcohols and polyols.
Carbomers also form pH-dependent complexes with certain polymeric excipients. Adjustment of pH and/or solubility parameter can also work in this situation.

Regulatory Status

Included in the FDA Inactive Ingredients Database (oral suspensions, tablets; ophthalmic, rectal, topical, transdermal preparations; vaginal suppositories). Included in nonparenteral medicines licensed in Europe. Included in the Canadian List of Acceptable Nonmedicinal Ingredients.

폴리아크릴산 준비 용품 및 원자재

원자재

준비 용품


폴리아크릴산 공급 업체

글로벌( 350)공급 업체
공급자 전화 팩스 이메일 국가 제품 수 이점
Hefei TNJ Chemical Industry Co.,Ltd.
86-0551-65418684 18949823763
86-0551-65418684 info@tnjchem.com China 3001 55
Univar Solutions(China) Co., Ltd.
15902132654
86-21-61932700 Ivy.zhuang@univarsolutions.com CHINA 275 58
Hubei Xindesheng Material Technology Co., Ltd.
18971041571 +86-15071057538
vickyzhao@whdschem.com CHINA 154 58
Shanghai Dumi Biotechnology Co.,ltd
17172178855 +8617172178855
aimee@chinadumi.com CHINA 233 58
Shanghai UCHEM Inc.
15502138767 15502138767
sales@myuchem.com CHINA 2667 58
Hebei Qige Biological Technology Co. Ltd
8618733132031
qige01@hbqige.com CHINA 1159 58
Hengshui Haoye Chemical Co.,Ltd.
0318-2102300
hy@chemcoms.com CHINA 216 58
Springchem New Material Technology Co.,Limited
+8613917661608 +86-021-62885108
info@spring-chem.com China 2065 57
Hangzhou FandaChem Co.,Ltd.
008615858145714
+86-571-56059825 fandachem@gmail.com CHINA 8882 55
Tianjin Zhongxin Chemtech Co., Ltd.
022-66880623
022-66880086 sales@tjzxchem.com CHINA 537 58

폴리아크릴산 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved