Chinese English Japanese Germany Korea


에틸렌디아민 구조식 이미지
카스 번호:
포뮬러 무게:
MOL 파일:

에틸렌디아민 속성

8.5 °C (lit.)
끓는 점
118 °C (lit.)
0.899 g/mL at 25 °C (lit.)
증기 밀도
2.07 (vs air)
10 mm Hg ( 20 °C)
n20/D 1.4565(lit.)
93 °F
저장 조건
Flammables area
ethanol: soluble(lit.)
물리적 상태
Liquid, Fuming In Air
산도 계수 (pKa)
10.712(at 0℃)
colorless to pale yellow
Specific Gravity
Strong ammoniacal odor; ammonia-like mild and ammoniacal odor.
12.2 (100g/l, H2O, 20℃)
Air Sensitive
Henry's Law Constant
1.69(x 10-9 atm?m3/mol) at 25 °C (Westheimer and Ingraham, 1956)
노출 한도
TLV-TWA 10 ppm (~25 mg/m3) (ACGIH, MSHA, and OSHA); IDLH 2000 ppm (NIOSH).
CAS 데이터베이스
107-15-3(CAS DataBase Reference)
Ethylenediamine (107-15-3)
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 C
위험 카페고리 넘버 10-21/22-34-42/43
안전지침서 23-26-36/37/39-45
유엔번호(UN No.) UN 1604 8/PG 2
WGK 독일 2
RTECS 번호 KH8575000
F 고인화성물질 10-34
자연 발화 온도 716 °F
위험 등급 8
포장분류 II
HS 번호 29212110
유해 물질 데이터 107-15-3(Hazardous Substances Data)
독성 LD50 orally in rats: 1.16 g/kg (Smyth)
기존화학 물질 KE-13141
중점관리물질 필터링 별표1-57
사고대비 물질 필터링 25
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H226 인화성 액체 및 증기 인화성 액체 구분 3 경고
H302 삼키면 유해함 급성 독성 물질 - 경구 구분 4 경고 P264, P270, P301+P312, P330, P501
H311 피부와 접촉하면 유독함 급성 독성 물질 - 경피 구분 3 위험 P280, P302+P352, P312, P322, P361,P363, P405, P501
H312 피부와 접촉하면 유해함 급성 독성 물질 - 경피 구분 4 경고 P280,P302+P352, P312, P322, P363,P501
H314 피부에 심한 화상과 눈에 손상을 일으킴 피부부식성 또는 자극성물질 구분 1A, B, C 위험 P260,P264, P280, P301+P330+ P331,P303+P361+P353, P363, P304+P340,P310, P321, P305+ P351+P338, P405,P501
H315 피부에 자극을 일으킴 피부부식성 또는 자극성물질 구분 2 경고 P264, P280, P302+P352, P321,P332+P313, P362
H317 알레르기성 피부 반응을 일으킬 수 있음 피부 과민성 물질 구분 1 경고 P261, P272, P280, P302+P352,P333+P313, P321, P363, P501
H318 눈에 심한 손상을 일으킴 심한 눈 손상 또는 자극성 물질 구분 1 위험 P280, P305+P351+P338, P310
H334 흡입 시 알레르기성 반응, 천식 또는 호흡 곤란 등을 일으킬 수 있음 호흡기 과민성 물질 구분 1 위험 P261, P285, P304+P341, P342+P311,P501
H412 장기적 영향에 의해 수생생물에 유해함 수생 환경유해성 물질 - 만성 구분 3 P273, P501
P210 열·스파크·화염·고열로부터 멀리하시오 - 금연 하시오.
P260 분진·흄·가스·미스트·증기·...·스프레이를 흡입하지 마시오.
P261 분진·흄·가스·미스트·증기·...·스프레이의 흡입을 피하시오.
P273 환경으로 배출하지 마시오.
P280 보호장갑/보호의/보안경/안면보호구를 착용하시오.
P310 즉시 의료기관(의사)의 진찰을 받으시오. 삼켰다면 즉시 의료기관(의사)의 도움을 받으시오.
P303+P361+P353 피부(또는 머리카락)에 묻으면 오염된 모든 의복은 벗거나 제거하시오 피부를 물로 씻으시오/샤워하시오.
P305+P351+P338 눈에 묻으면 몇 분간 물로 조심해서 씻으시오. 가능하면 콘택트렌즈를 제거하시오. 계속 씻으시오.
P342+P311 호흡기 증상이 나타나면 의료기관(의사)의 진찰을 받으시오.
P370+P378 화재 시 불을 끄기 위해 (Section 5. 폭발, 화재시 대처방법의 적절한 소화제)을(를) 사용하시오.
P405 밀봉하여 저장하시오.
NFPA 704
3 0

에틸렌디아민 MSDS


에틸렌디아민 C화학적 특성, 용도, 생산


에틸렌다이아민(Ethylenediamine)은 유기화합물의 일종이다. 킬레이트제로 작용할 수 있으며 리간드일 경우 en으로 축약시켜 표기하기도 한다. 강염기성이며, 암모니아 냄새가 난다.


에틸렌다이아민은 두 자리 리간드로 작용할 수 있어서, 금속 이온과 배위하여 착물을 형성한다. 따라서 특정한 금속 이온을 농축, 분리, 제거, 이동하는 데 사용될 수 있다.


에틸렌다이아민은 체내에 흡수되었을 때 알레르기 반응을 일으킬 수 있다. 피부에 염증을 일으킬 수 있으며 점액질 막을 파괴시킬 수 있다.


Ethylenediamine is used in numerous industrial proces ses as a solvent for casein or albumin, as a stabilizer in rubber latex and as a textile lubricant. It can be found in epoxy-resin hardeners, cooling oils, fungicides, and waxes. Contact dermatitis from ethylenediamine is almost exclusively due to topical medicaments. Occupational contact dermatitis in epoxy-resin systems is rather infrequent. Ethylenediamine can cross react with triethylenetetramine and diethylenetriamine. Ethylenediamine was responsible for sensitization in pharmacists handling aminophylline suppositories, in nurses preparing and administering injectable theophylline, and in a laboratory technician in the manufacture of aminophylline tab lets.

화학적 성질

Ethylenediamine, a polyamine, is a strongly alkaline, colorless, clear, thick liquid. Ammonia odor. A solid below 8.5℃. The Odor Threshold is 1.0 ppm

물리적 성질

Clear, colorless, volatile, slight viscous, hygroscopic liquid with a sweet, ammonia-like odor. The average least detectable odor threshold concentrations in water at 60 °C and in air at 40 °C were 12 and 52 mg/L, respectively (Alexander et al., 1982).


Intermediate in the manufacture of EDTA; catalytic agent in epoxy resins; dyes, solvent stabilizer; neutralizer in rubber products


Ethylenediamine is used as a stabilizerfor rubber latex, as an emulsifier, as aninhibitor in antifreeze solutions, and intextile lubricants. It is also used as a solvent for albumin, shellac, sulfur, and othersubstances.


[Note—Edamine is the recommended contraction for the ethylenediamine radical.].


ChEBI: An alkane-alpha,omega-diamine in which the alkane is ethane.

생산 방법

The production of ethylene-1,2-diamine (EDA) is by the catalytic amination of monoethanolamine or the reaction of aqueous ammonia with 1,2-dichloroethane (Spitz 1979). U.S. Production is estimated at greater than 33,000 tons in 1975.


An organic compound, H2NCH2CH2NH2. It is important in inorganic chemistry because it may function as a bidentantate ligand, coordinating to a metal ion by the lone pairs on the two nitrogen atoms. In the names of complexes it is given the abbreviation en.

공기와 물의 반응

Highly flammable. Hygroscopic. Fumes in the air. Water soluble. Biodegrades readily.

반응 프로필

A base. Highly reactive with many compounds. Can react violently with acetic acid, acetic anhydride, acrolein, acrylic acid, acrylonitrile, allyl chloride, carbon disulfide, chlorosulfonic acid, epichlorohydrin, ethylene chlorohydrin, hydrogen chloride, mesityl oxide, nitric acid, oleum, AgClO4, sulfuric acid, beta-propiolactone and vinyl acetate. Incompatible with strong acids, strong oxidizers (perchlorate salts), and chlorinated organic compounds. Ethylenediamine is also incompatible with halogenated organic compounds and metal halides. May react with nitromethane and diisopropyl peroxydicarbonate. May ignite on contact with cellulose nitrate. Readily absorbs carbon dioxide from the air to give crusty solid deposits. . Ethylenediamine reacts violently with ethylene chlorohydrin. (Lewis, R.J., Sr. 1992. Sax's Dangerous Properties of Industrial Materials, 8th Edition. New York: Van Nostrand Reinhold. pp. 1554.).


Toxic by inhalation and skin absorption, strong irritant to skin and eyes. Flammable, moderate fire risk. Questionable carcinogen.


Human subjects found 100 p.p.m. EDA for a few seconds to be inoffensive but higher concentrations of 200 and 400 p.p.m. produced noticeable irritation of the nasal mucosa (HSDB 1988). Acute EDA ingestion will cause burns of the mouth, esophagus and possibly stomach. Eye contact would be expected to produce a serious burn due to the corrosiveness of the compound. Acute exposure to the skin is likely to produce a skin burn, while chronic exposure will cause a serious burn.
EDA, in addition, is a potent allergen causing hypersensitization in exposed individuals (HSDB 1988). Because of such reactions, it has been difficult to establish threshold limits that will prevent the hypersensitization response. Allergic reactions to EDA in hair and nail care products have been observed among beauty operators, patrons and their husbands (Arena 1979). In the lacquer and shellac industries, exposure to EDA used as a solvent or paint thinner has produced wheezing, heaviness in the chest, severe asthma, allergic coryza and skin rashes (Arena 1979). Workmen exposed to EDA occasionally see halos around objects and have some blurring of vision, presumably due to the effects on the corneal epithelium (Grant 1974). In a study population of 1158 paid volunteers given a patch test, 0.43% showed a positive reaction to EDA (Prystowsky et al 1979).


Ethylenediamine is a severe skin irritant, producing sensitization, an allergic reaction andblistering on the skin. Pure liquid on contact with the eyes can damage vision. A25% aqueous solution can be injurious to theeyes. Inhalation of its vapors can producea strong irritation to the nose and respiratory tract leading to chemical pneumonitis and pulmonary edema. Such irritation inhumans with symptoms of cough and dis tressed breathing may be noted at concentrations of >400 ppm. Repeated exposure tohigh concentrations of this substance in airmay cause lung, liver, and kidney damage.The toxicity of this compound, however, is much less than that of ethylenimine.The acute oral toxicity value in animalswas low to moderate. An oral LD50 value inrats is 500 mg/kg (NIOSH 1986).


Burning rate: 2.2 mm/minute. When exposed to heat or flame, the material has a moderate fire potential. The material can react readily with oxidizing materials. Containers may explode in heat of fire. Material emits nitrogen oxides when burned. Avoid carbon disulfide, silver perchlorate, imines, oxidizing materials. Stable. Hazardous polymerization may not occur.

화학 반응

Reactivity with Water Gives off heat, but reaction is not hazardous; Reactivity with Common Materials: No reaction; Stability During Transport: Stable; Neutralizing Agents for Acids and Caustics: Flush with water; Polymerization: Not pertinent; Inhibitor of Polymerization: Not pertinent.

공업 용도

EDA functions as a reactive intermediate in the synthesis of carbamate fungicides and in the preparation of dyes, synthetic waxes, resins, insecticides and asphalt wetting agents (Parmeggiani 1983). EDA is a solvent for casein, albumin, shellac, and sulfur; an emulsifier; a stabilizer for rubber latex; an inhibitor in antifreeze solutions; and a pharmaceutic aid (aminophylline injection stabilizer) (Windholz 1983). It is also an important ingredient in hair-settings, cold wave lotions, and nail polish (Arena 1979).

색상 색인 번호

Ethylenediamine is used in numerous industrial processes as a solvent for casein or albumin, as a stabilizer in rubber latex, and as a textile lubricant. It can be found in epoxy resin hardeners, cooling oils, fungicides, and waxes. Contact dermatitis from ethylenediamine is almost exclusively due to topical medicaments. Occupational contact dermatitis in epoxy resin systems is rather infrequent. Ethylenediamine can crossreact with triethylenetetramine and diethylenetriamine. Ethylenediamine was found to be responsible for sensitization in pharmacists handling aminophylline suppositories, in nurses preparing and administering injectable theophylline, and in a laboratory technician in the manufacture of aminophylline tablets

Safety Profile

A human poison by inhalation. Experimental poison by inhalation, intraperitoneal, subcutaneous, and intravenous routes. Moderately toxic by ingestion and skin contact, Experimental reproductive effects. Corrosive. A severe skin and eye irritant. An allergen and sensitizer. Mutation data reported. Flammable liquid when exposed to heat, flame, or oxidizers. Can react violently with acetic acid, acetic anhydride, acrolein, acrylic acid, acrylonitrile, allyl chloride, CS2, chlorosulfonic acid, epichlorohydrin, ethylene chlorohydrin, HCl, mesityl oxide, HNO3, oleum, AgClO4, H2SO4, Ppropiolactone, or vinyl acetate. To fight fwe, use CO2, dry chemical, alcohol foam. When heated to decomposition it emits toxic fumes of NOx and NH3. See also MINES.

잠재적 노출

Ethylenediamine is used as an intermediate; as a urine acidifier; as a solvent; an emulsifier for casein and shellac solutions; a stabilizer in rubber late. A chemical intermediate in the manufacture of dyes; corrosion inhibitors; synthetic waxes; fungicides, resins, insecticides, asphalt wetting agents; and pharmaceuticals. Ethylenediamine is a degradation product of the agricultural fungicide Maneb.


Chemical/Physical. Absorbs carbon dioxide forming carbonates (Patnaik, 1992; Windholz et al., 1983).
At an influent concentration of 1,000 mg/L, treatment with GAC resulted in an effluent concentration of 893 mg/L. The adsorbability of the carbon used was 21 mg/g carbon (Guisti et al., 1974).

신진 대사

EDA is absorbed through the skin (Beard and Noe 1981). The penetration rates, distribution and excretion of topically applied [14C]-ethylenediamine have been studied in the rat (Yang et al 1987). Male Wistar rats were percutaneously exposed to solutions of 10, 25 or 50% EDA over about 10% of the body surface. Absorption of EDA was concentration dependent, with about 12, 55 and 61% being absorbed at the 70, 25 and 50% concentration respectively. The terminal plasma half-life of EDA was approximately 4.5 h and the major route of excretion was via the urine. The authors concluded that skin absorption is relatively low and the reduced absorption at higher EDA concentrations may be due to epidermal damage.
When male rats were given 5, 50 or 500 mg/kg doses of [14C]-EDA by oral, endotracheal and i.v. routes, urinary excretion accounted for 42-65% of the administered radioactivity (Yang and Tallant 1982). Fecal excretion amounted to 5-32% of the dose, depending on the route and 6-9% was eliminated in expired air as 14CO2. As the dosage increased from 5 to 50 to 500 mg/kg, there was a pattern of accumulated tissue EDA with a corresponding decrease in metabolite formation. The route of administration did not appear to change the metabolic profile. The major urinary metabolite in the rat was N-acetylethylenediamine (Yang and Tallant 1982). Cotgreave and Caldwell (1983) found that EDA was not detectable in the plasma 2 h after oral and i.v. administration of aminophylline in three healthy human subjects. Davies et al (1983) observed that ethylenediamine uptake in rat brain slices was temperature-dependent and appeared to take place by both sodium dependent and sodium independent mechanisms. Yang et al (1984a) demonstrated age- and, to a lesser extent, sex-related differences in the pharmacokinetics of EDA in Fischer 344 rats.

운송 방법

UN1604 Ethylenediamine, Hazard class: 8; Labels: 8-Corrosive material, 3-Flammable liquid

Purification Methods

It forms a constant-boiling (b 118.5o, monohydrate, m 10o) mixture with water (23w/w%). [It is hygroscopic and miscible with water.] Recommended purification procedure [Asthana & Mukherjee in J.F.Coetzee (ed), Purification of Solvents, Pergamon Press, Oxford, 1982 cf p 53]: to 1L of ethylenediamine is added 70g of type 5A Linde molecular sieves and shaken for 12hours. The liquid is decanted and shaken for a further 12hours with a mixture of CaO (50g) and KOH (15g). The supernatant is fractionally distilled (at 20:1 reflux ratio) in contact with freshly activated molecular sieves. The fraction distilling at 117.2o /760mm is collected. Finally it is fractionally distilled from sodium metal. All distillations and storage of ethylenediamine should be carried out under nitrogen to prevent reaction with CO2 and water. The material containing 30% water is dried with solid NaOH (600g/L) and heated on a water bath for 10hours. Above 60o, separation into two phases takes place. The hot ethylenediamine layer is decanted off, refluxed with 40g of sodium for 2hours and distilled [Putnam & Kobe Trans Electrochem Soc 74 609 1938]. Ethylenediamine is usually distilled under nitrogen. Alternatively, it is dried over type 5A Linde molecular sieves (70g/L), then a mixture of 50g of CaO and 15g of KOH/L, with further dehydration of the supernatant with molecular sieves followed by distillation from molecular sieves and, finally, from sodium metal. A spectroscopically improved material is obtained by shaking with freshly baked alumina (20g/L) before distillation. [Beilstein 4 IV 1166.]

비 호환성

Vapor may form explosive mixture with air. Ethylenediamine is a medium strong base. Violent reaction with strong acids; strong oxidizers; chlorinated organic compounds; acetic acid; acetic anhydride; acrolein, acrylic acid; acrylonitrile, allyl chloride; carbon disulfide; chlorosulfonic acid; epichlorohydrin, ethylene chlorohydrin, oleum, methyl oxide; vinyl acetate. Also incompatible with silver perchlorate, 3-propiolactone, mesityl oxide; ethylene dichloride; organic anhydrides; isocyanates, acrylates, substituted allyls; alkylene oxides; ketones, aldehydes, alcohols, glycols, phenols, cresols, caprolactum solution. Attacks aluminum, copper, lead, tin, zinc, and alloys; some plastics, rubber, and coatings.

폐기물 처리

Controlled incineration (oxides of nitrogen are removed from the effluent gas by scrubbers and/or thermal devices).

에틸렌디아민 준비 용품 및 원자재


준비 용품

에틸렌디아민 공급 업체

글로벌( 0)공급 업체
공급자 전화 팩스 이메일 국가 제품 수 이점

에틸렌디아민 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved