알루미늄분

알루미늄분
알루미늄분 구조식 이미지
카스 번호:
7429-90-5
한글명:
알루미늄분
동의어(한글):
알루미늄;알루미늄분;알루미늄분말;알루미늄원소;알루미늄조각;피로분말;알루미늄파우더;알루미늄(원소)
상품명:
Aluminum
동의어(영문):
AL;ALUMINIUM;AE;Aluminium powder;ALUMINUM POWDER;Aluminum foil;ADO;ALUMINUM ALLOY;a95;Aluminium foil
CBNumber:
CB6227696
분자식:
Al
포뮬러 무게:
26.98
MOL 파일:
7429-90-5.mol
MSDS 파일:
SDS

알루미늄분 속성

녹는점
660.37 °C (lit.)
끓는 점
2460 °C (lit.)
밀도
2.7 g/mL at 25 °C (lit.)
증기압
0.13-1300Pa at 974℃
인화점
400°C
저장 조건
Flammables area
용해도
insoluble in H2O; soluble in acid solutions, alkaline solutions
물리적 상태
철사
색상
노란색
Specific Gravity
2.702 (Water=1)
수소이온지수(pH)
0.5 (H2O, 20°C)
냄새
냄새 없는
비저항
2.6548 μΩ-cm
수용성
물에 불용성.
감도
Moisture Sensitive
Merck
13,321 / 13,321
Dielectric constant
1.6-1.8(0.0℃)
노출 한도
TLV-TWA 10 mg/m3 (Al dust), 5 mg/m3 (pyrophoric Al powder and welding fumes), 2 mg/m3 (soluble Al salts and alkyls) (ACGIH).
안정성
안정적인. 분말은 가연성입니다. 할로겐과 매우 발열적으로 반응함. 습기와 공기에 민감합니다. 강산, 부식제, 강산화제, 할로겐화 탄화수소와 호환되지 않습니다.
CAS 데이터베이스
7429-90-5(CAS DataBase Reference)
NIST
Aluminum(7429-90-5)
EPA
Aluminum (7429-90-5)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 F,Xi,Xn,N
위험 카페고리 넘버 17-15-36/38-10-67-65-62-51/53-48/20-38-11-50
안전지침서 7/8-43A-43-26-62-61-36/37-33-29-16-9
유엔번호(UN No.) 1396
WGK 독일 3
RTECS 번호 BD0330000
자연 발화 온도 400 °C
TSCA Yes
위험 등급 8
포장분류 III
HS 번호 76032000
유해 물질 데이터 7429-90-5(Hazardous Substances Data)
독성 An element that is abundant (about 8%) in the crust of the earth. Aluminum appears to have no biological function and, from the point of view of acute toxicity, is essentially non-toxic. Because it is primarily eliminated by excretion, people with compromised kidney function may accumulate the metal. In kidney dialysis patients, this is a particular problem because the dialyzing solution may contain high concentrations of aluminum. This condition (dialysis encephalopathy or dialysis dementia) has symptoms that include impaired memory, EEG changes, dementia, aphasia, ataxia, and convulsions.One possible mechanism of toxicity may be inhibition of hexokinases in the brain. The chelating agent deferoxamine has been used successfully in treating this condition.Aluminum is one of the primary toxicants leached into surface water (and, therefore, water supplies) by acid deposition. The connection between aluminum and Alzheimers disease is controversial and many investigators believe there is no connection.
기존화학 물질 KE-00881
그림문자(GHS): GHS hazard pictograms
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H228 인화성 고체 인화성 고체 구분 1
구분 2
위험
경고
GHS hazard pictograms P210, P240,P241, P280, P370+P378
H261 물과 접촉시 인화성가스를 발생시킴 물반응성 물질 및 혼합물 구분 2
구분 3
위험
경고
GHS hazard pictograms P231+P232, P280, P370+P378,P402+P404, P501
예방조치문구:
P210 열·스파크·화염·고열로부터 멀리하시오 - 금연 하시오.
P223 물과 접촉하지 마시오.
P231+P232 불활성 기체 하에서 취급하고, 습기를 방지하시오.
P240 용기와 수용설비를 접지 및 접합시키시오.
P241 폭발 방지용 장비[전기적/환기/조명/...]을(를) 사용하시오.
P280 보호장갑/보호의/보안경/안면보호구를 착용하시오.
NFPA 704
3
0 1

알루미늄분 MSDS


Aluminium

알루미늄분 C화학적 특성, 용도, 생산

용도

비식품 용도로는 용기포장, 건축자재, 전선, 가전제품, 엔진, 열 교환기, 주방기구, 기계, 화학 설비 등에 사용된다.

개요

Although aluminum was one of the last metals to be commercialized, it has been recognized for centuries. Aluminum was first recognized by the Romans as an astringent substance, and they called it ‘alum.’ By the middle ages it was manufactured as ‘alum stone,’ a subsulfate of alumina and potash. In 1825, Hans C. ?ersted was able to isolate a few drops of the raw material, and by 1886 it had patents from both Charles Martin Hall of the United States and Paul-Louis-Toussaint Heroult of France. Aluminum was commercialized in industry by the end of the nineteenth century.

화학적 성질

Aluminum metallic powder is a light, silvery-white to gray, odorless powder. Aluminum metallic powder is reactive and flammable. Aluminum is normally coated with a layer of aluminum oxide unless the particles are freshly formed. There are two main types of aluminum powder: the “fl ake” type made by stamping the cold metal and the “granulated” type made from molten aluminum. Pyro powder is an especially fi ne type of “fl ake” powder. Aluminum powders are used in paints, pigments, protective coatings, printing inks, rocket fuel, explosives, abrasives, and ceramics; the production of inorganic and organic aluminum chemicals; and as catalysts. Pyro powder is mixed with carbon and used in the manufacture of fi reworks. The coarse powder is used in aluminothermics.

물리적 성질

Pure metallic aluminum is not found in nature. It is found as a part of compounds,especially compounded with oxygen as in aluminum oxide (Al2O3). In its purified form, aluminumis a bluish-white metal that has excellent qualities of malleability and ductility. Purealuminum is much too soft for construction or other purposes. However, adding as little as1% each of silicon and iron will make aluminum harder and give it strength.
Its melting point is 660.323°C, its boiling point is 2,519°C, and its density is 2.699 g/cm3.

물리적 성질

Emissivity of Al
Clean polished foil: 0.04 (300 K), 0.02 (78 K), 0.011 (2 K, λ: 14 mm)
Electrolytic polished Al after annealing: 0.07 (1000 K), 0.04 (500 K), 0.03 (300 K)
Commercial products: 0.09 (373 K)

Isotopes

There are 23 isotopes of aluminum, and only one of these is stable. The singlestable isotope, Al-27, accounts for 100% of the element’s abundance in the Earth’scrust. All the other isotopes are radioactive with half-lives ranging from a few nanosecondsto 7.17×10+15 years.

Origin of Name

From the Latin word alumen, or aluminis, meaning “alum,” which is a bitter tasting form of aluminum sulfate or aluminum potassium sulfate.

출처

Aluminum is the third most abundant element found in the Earth’s crust. It is found inconcentrations of 83,200 ppm (parts-per-million) in the crust. Only the nonmetals oxygenand silicon are found in greater abundance. Aluminum oxide (Al2O3) is the fourth mostabundant compound found on Earth, with a weight of 69,900 ppm. Another alum-typecompound is potassium aluminum sulfate [KAl(SO4)2?12H2O]. Although aluminum is notfound in its free metallic state, it is the most widely distributed metal (in compound form) onEarth. Aluminum is also the most abundant element found on the moon.
Almost all rocks contain some aluminum in the form of aluminum silicate minerals foundin clays, feldspars, and micas. Today, bauxite is the major ore for the source of aluminummetal. Bauxite was formed eons ago by the natural chemical reaction of water, which thenformed aluminum hydroxides. In addition to the United States, Jamaica and other Caribbeanislands are the major sources of bauxite. Bauxite deposits are found in many countries, butnot all are of high concentration.

Characteristics

Alloys of aluminum are light and strong and can easily be formed into many shapes—thatis, it can be extruded, rolled, pounded, cast, and welded. It is a good conductor of electricityand heat. Aluminum wires are only about 65% as efficient in conducting electricity as arecopper wires, but aluminum wires are significantly lighter in weight and less expensive thancopper wires. Even so, aluminum wiring is not used in homes because of its high electricalresistance, which can build up heat and may cause fires.
Aluminum reacts with acids and strong alkali solutions. Once aluminum is cut, the freshsurface begins to oxidize and form a thin outer coating of aluminum oxide that protects themetal from further corrosion. This is one reason aluminum cans should not be discarded inthe environment. Aluminum cans last for many centuries (though not forever) because atmosphericgases and soil acids and alkalis react slowly with it. This is also the reason aluminumis not found as a metal in its natural state.

용도

As pure metal or alloys (magnalium, aluminum bronze, etc.) for structural material in construction, automotive, electrical and aircraft industries. In cooking utensils, highway signs, fencing, containers and packaging, foil, machinery, corrosion resistant chemical equipment, dental alloys. The coarse powder in aluminothermics (thermite process); the fine powder as flashlight in photography; in explosives, fireworks, paints; for absorbing occluded gases in manufacture of steel. In testing for Au, As, Hg; coagulating colloidal solutions of As or Sb; pptg Cu; reducer for determining nitrates and nitrites; instead of Zn for generating hydrogen in testing for As. Forms complex hydrides with lithium and boron, such as LiAlH4, which are used in preparative organic chemistry.

생산 방법

Aluminum production involves four main steps: bauxite mining,refining of bauxite to yield alumina; electrolytic reduction of alumina to yield aluminum; and aluminum casting into ingots.

정의

aluminium: Symbol Al. A silverywhitelustrous metallic element belongingto group 3 (formerly IIIB) ofthe periodic table; a.n. 13; r.a.m.26.98; r.d. 2.7; m.p. 660°C; b.p.2467°C. The metal itself is highly reactivebut is protected by a thintransparent layer of the oxide, whichforms quickly in air. Aluminium andits oxide are amphoteric. The metalis extracted from purified bauxite(Al2O3) by electrolysis; the mainprocess uses a Hall–Heroult cell butother electrolytic methods are underdevelopment, including conversionof bauxite with chlorine and electrolysisof the molten chloride. Pure aluminiumis soft and ductile but itsstrength can be increased by workhardening.A large number of alloysare manufactured; alloying elementsinclude copper, manganese, silicon,zinc, and magnesium. Its lightness,strength (when alloyed), corrosion resistance,and electrical conductivity(62% of that of copper) make it suitablefor a variety of uses, includingvehicle and aircraft construction,building (window and door frames),and overhead power cables. Althoughit is the third most abundantelement in the earth’s crust (8.1% byweight) it was not isolated until 1825by H. C. Oersted.

일반 설명

Aluminum metal held above melting point of 1220°F (660°C) for ease in handling. Cools and solidifies if released. Contact causes thermal burns. Plastic or rubber may melt or lose strength upon contact. Protective equipment designed for chemical exposure only is not effective against direct contact. Take care walking on the surface of a spill to avoid stepping into a pocket of molten aluminum below the crust. Do not attempt to remove aluminum impregnated clothing because of the danger of tearing flesh if there has been a burn.

공기와 물의 반응

Violent reaction with water; contact may cause an explosion or may produce a flammable gas (hydrogen). Moist air produces hydrogen gas. Does not burn on exposure to air.

위험도

Aluminum dust and fine powder are highly explosive and can spontaneously burst intoflames in air. When treated with acids, aluminum chips and coarse powder release hydrogen.The heat from the chemical reaction can then cause the hydrogen to burn or explode. Purealuminum foil or sheet metal can burn in air when exposed to a hot enough flame. Fumesfrom aluminum welding are toxic if inhaled.

건강위험

Exposures to aluminum metallic powder have been known to cause health effects with symptoms such as irritation, redness, and pain to the eyes, coughing, shortness of breath, irritation to the respiratory tract, nausea, and vomiting in extreme cases. In prolonged periods of inhalation exposures, as in occupational situations, aluminum metallic powder is known to cause pulmonary fi brosis, numbness in fi ngers, and (in limited cases) brain effects. Workers with pre-existing skin disorders, eye problems, or impaired respiratory function are known to be more susceptible to the effects of aluminum metallic powder.

화재위험

Substance is transported in molten form at a temperature above 705°C (1300°F). Violent reaction with water; contact may cause an explosion or may produce a flammable gas. Will ignite combustible materials (wood, paper, oil, debris, etc.). Contact with nitrates or other oxidizers may cause an explosion. Contact with containers or other materials, including cold, wet or dirty tools, may cause an explosion. Contact with concrete will cause spalling and small pops.

공업 용도

Alloying aluminum with various elementsmarkedly improves mechanical properties,strength primarily, at only a slight sacrifice indensity, thus increasing specific strength, orstrength-to-weight ratio. Traditionally, wroughtalloys have been produced by thermomechanicallyprocessing cast ingot into mill productssuch as billet, bar, plate, sheet, extrusions, andwire. For some alloys, however, such mill productsare now made by similarly processing“ingot” consolidated from powder. Such alloysare called PM (powder metal) wrought alloysor simply PM alloys. To distinguish the traditionaltype from these, they are now sometimesreferred to as ingot-metallurgy (IM) alloys oringot-cast alloys. Another class of PM alloysare those used to make PM parts by pressingand sintering the powder to near-net shape.There are also many cast alloys. All told, thereare about 100 commercial aluminum alloys.

잠재적 노출

Most hazardous exposures to aluminum occur in smelting and refining processes. Aluminum is mostly produced by electrolysis of Al2O3 dissolved in molten cryolite (Na3AlF6). Aluminum is alloyed with copper, zinc, silicon, magnesium, manganese, and nickel; special additives may include chromium, lead, bismuth, titanium, zirconium, and vanadium. Aluminum and its alloys can be extruded or processed in rolling mills, wire works, forges, or foundries; and are used in the shipbuilding, electrical, building, aircraft, automobile, light engineering, and jewelry industries. Aluminum foil is widely used in packaging. Powdered aluminum is used in the paints and pyrotechnic industries. Alumina, emery, and corundum has been used for abrasives, refractories, and catalysts; and in the past in the first firing of china and pottery.

Carcinogenicity

Most animal studies have failed to demonstrate carcinogenicity attributable to aluminum administered by various routes in rats, rabbits, mice, and guinea pigs. Some of these studies even suggested some antitumor activity. However, aluminum was found to cause cancer in a few experimental studies such as sarcomas in rats when implanted subcutaneously. This observation was attributed to the dimensions of the implants rather than the chemical composition.
Significantly increased incidence of gross tumors was reported in male Long Evans rats and lymphoma leukemia in female Swiss mice given aluminum potassium sulfate in drinking water respectively for 2–2.5 years. A dose–response relationship could not be determined for either species because only one dose of aluminum was used and the type of tumors and organs in which they were found were not specified.

환경귀착

Aluminum binds diatomic phosphates and possibly depletes phosphate, which can lead to osteomalacia. High aluminum serum values and high aluminum concentration in the bone interfere with the function of vitamin D. The incorporation of aluminum in the bone may interfere with deposition of calcium; the subsequent increase of calcium in the blood may inhibit release of parathyroid hormones by the parathyroid gland. The mechanism by which aluminum concentrates in the brain is not known; it may interfere with the blood brain barrier.

저장

Aluminum metallic powder should be kept stored in a tightly closed container, in a cool, dry, ventilated area, protected against physical damage and isolated from sources of heat, ignition, smoking areas, and moisture. Aluminum metallic powder should be kept away from acidic, alkaline, combustible, and oxidizing materials and separate from halogenated compounds.

운송 방법

UN1309 Aluminum powder, coated, Hazard Class: 4.1; Labels: 4.1-Flammable solid. UN1383 Pyrophoric metals, n.o.s. or Pyrophoric alloys, n.o.s., Hazard Class: 4.2; Labels: 4.2-Spontaneously combustible material, Technical Name Required. UN1396 Aluminum powder, uncoated, Hazard Class: 4.3; Labels: 4.3-Dangerous when wet material. NA9260 (North America) Aluminum, molten, Hazard class: 9; Labels: 9-Miscellaneous hazardous material.

Structure and conformation

The space lattice of Al belongs to the cubic system, and its face centered cubic lattice has a lattice constant of a=0.404145 nm (25 ℃).

비 호환성

Aluminum powder forms an explosive mixture with air and is a strong reducing agent that reacts violently with oxidizers, strong bases; strong acids; somehalogenated hydrocarbons; nitrates, sulfates, metal oxides and many other substances. Keep away from combustible materials.

폐기물 처리

Consult with environmental regulatory agencies for guidance on acceptable disposalpractices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal of Aluminum Oxide-Disposal in a sanitary landfill. Mixing of industrial process wastes and municipal wastes at such sites is not encouraged however. Aluminum powder may be recovered and sold as scrap. Recycling and recovery is a viable option to disposal for aluminum metal and aluminum fluoride (A-57).

주의 사항

The dry powder is stable but the damp or moist bulk dust may heat spontaneously and form flammable hydrogen gas. Moist aluminum powder may ignite in air, with the formation of flammable hydrogen gas and a combustible dust. Powdered material may form explosive dust-air mixtures. Contact with water, strong acids, strong bases, or alcohols releases flammable hydrogen gas. The dry powder can react violently or explosively with many inorganic and organic chemicals

알루미늄분 준비 용품 및 원자재

원자재

준비 용품


알루미늄분 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved