ChemicalBook
Chinese English Japanese Germany Korea

무수초산

무수초산
무수초산 구조식 이미지
카스 번호:
108-24-7
한글명:
무수초산
동의어(한글):
아세트산무수물;아세트산화물;무수아세트산;무수초산;빙초산ACETICACIDANHYDRIDE;아세틸아세트산;아세틸에테르;에탄오익무수물;에탄오익산무수물
상품명:
Acetic anhydride
동의어(영문):
AC2O;acetic;(CH3CO)2O;acetylether;Acetyl ether;ACETYL OXIDE;ACETIC OXIDE;Acetanhydrid;Acetanhydride;Acetyl acetate
CBNumber:
CB2852742
분자식:
C4H6O3
포뮬러 무게:
102.08864
MOL 파일:
108-24-7.mol

무수초산 속성

녹는점
-73.1 °C
끓는 점
140 °C
밀도
1.087
증기 밀도
3.5 (vs air)
증기압
10 mm Hg ( 36 °C)
굴절률
n20/D 1.390(lit.)
인화점
130 °F
저장 조건
Store at RT.
용해도
Miscible with ether, chloroform and benzene.
물리적 상태
Liquid
색상
Colorless
Specific Gravity
1.082
냄새
Very strong; pungent; vinegar-like characteristic odor.
수소이온지수(pH)
3 (10g/l, H2O, 20°C)
폭발한계
2.0-10.2%(V)
수용성
REACTS
감도
Moisture Sensitive
Merck
14,56
BRN
385737
노출 한도
NIOSH REL: ceiling 5 ppm (20 mg/m3), IDLH 200 ppm; OSHA PEL: 5 ppm; ACGIH TLV: ceiling 5 ppm.
안정성
Stability Flammable. Incompatible with strong oxidizing agents, water, strong bases, alcohols.
CAS 데이터베이스
108-24-7(CAS DataBase Reference)
NIST
Acetic acid anhydride(108-24-7)
EPA
Acetic anhydride (108-24-7)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 C,Xn,F,Xi
위험 카페고리 넘버 11-20/21/22-37/38-41-34-20/21-10-20/22-19-40
안전지침서 26-39-45-36/37/39-33-16
유엔번호(UN No.) UN 2924 3/PG 2
WGK 독일 3
RTECS 번호 AK1925000
F 고인화성물질 21
자연 발화 온도 629 °F
TSCA Yes
위험 등급 8
포장분류 II
HS 번호 29152400
유해 물질 데이터 108-24-7(Hazardous Substances Data)
독성 LD50 orally in rats: 1.78 g/kg (Smyth)
그림문자(GHS):
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H226 인화성 액체 및 증기 인화성 액체 구분 3 경고
H302 삼키면 유해함 급성 독성 물질 - 경구 구분 4 경고 P264, P270, P301+P312, P330, P501
H314 피부에 심한 화상과 눈에 손상을 일으킴 피부부식성 또는 자극성물질 구분 1A, B, C 위험 P260,P264, P280, P301+P330+ P331,P303+P361+P353, P363, P304+P340,P310, P321, P305+ P351+P338, P405,P501
H331 흡입하면 유독함 급성 독성 물질 흡입 구분 3 위험 P261, P271, P304+P340, P311, P321,P403+P233, P405, P501
예방조치문구:
P210 열·스파크·화염·고열로부터 멀리하시오 - 금연 하시오.
P303+P361+P353 피부(또는 머리카락)에 묻으면 오염된 모든 의복은 벗거나 제거하시오 피부를 물로 씻으시오/샤워하시오.
P305+P351+P338 눈에 묻으면 몇 분간 물로 조심해서 씻으시오. 가능하면 콘택트렌즈를 제거하시오. 계속 씻으시오.
P405 밀봉하여 저장하시오.

무수초산 MSDS


Acetic anhydride

무수초산 C화학적 특성, 용도, 생산

용도

초산셀룰로즈의 제조, 유기약품의 아세틸화제, 염료, 향료, 합성수지의 제조, 아스피린, 기타 약품, 초산에스테르류, 유기합성원료, 사진필름(불연성) 등에 사용.

개요

Acetic anhydride is a colourless liquid and appreciably soluble in water. It is of ethanoic acid smell. Acetic acid anhydride is flammable, moisture sensitive, and incompatible with strong oxidising agents, water, strong bases, alcohols, metals, reducing agents, amines, ammonia, nitrates, nitric acid, permanganates, phenols, sodium hydroxide, hydrogen peroxide, chromium trioxide, potassium hydroxide, perchloric acid, and ethanol. Acetic anhydride is mainly used for the acetylation of cellulose to cellulose acetate for photographic film and other applications. Upon burning, acetic anhydride decomposes and produces toxic gases and toxic fumes including acetic acid fumes. It attacks many metals with or without the presence of water.

화학적 성질

Acetic anhydride is a combustible, colorless, strongly refractive, liquid which has a strongly irritating odor.

화학적 성질

Colorless liquid

화학적 성질

Acetic anhydride, or ethanoic anhydride, is the chemical compound with the formula (CH3CO)2O. Commonly abbreviated Ac2O, it is the simplest isolatable acid anhydride and is a widely used reagent in organic synthesis. It is a colorless liquid that smells strongly of acetic acid, formed by its reaction with the moisture in the air.
Formic anhydride is an even simpler acid anhydride, but it spontaneously decomposes, especially once removed from solution.

화학적 성질

An esterification agent used in the preparation of modified starch and for acetylation of acetylated monoglycerides. It has a strong acetic odor.

물리적 성질

Colorless, very mobile liquid with a very strong, acetic acid-like odor. Experimentally determined detection and recognition odor threshold concentrations were <600 μg/m3 (<140 ppbv) and 1.5 mg/m3 (360 ppbv), respectively (Hellman and Small, 1974).

출처

Reported found in watercress (Nasturtium officinale r. br.).

용도

Acetic anhydride is an important solvent and acetylation agent. It is used for the manufacture of acetylcellulose, acetylsalicylic acid, acetanilide, nitrofurane, sulfonamides, vitamin B6 etc. Product Data Sheet

용도

Preparation of anhydrous acetic acid in nonaqueous titrimetry.

용도

manufacture of acetyl compounds, cellulose acetates. As acetulizer and solvent in examining wool fat, glycerol, fatty and volatile oils, resins; detection of rosin. Widely used in organic syntheses, e.g., as dehydrating agent in nitrations, sulfonations and other reactions where removal of water is necessary.

용도

Acetic Anhydride is an esterifier for food starch; also used in combi- nation with adipic anhydride.

정의

ChEBI: An cyclic carboxylic anhydride of acetic acid.

생산 방법

Acetic anhydride is produced by carbonylation of methyl acetate :
CH3CO2CH3 + CO → (CH3CO)2O
This process involves the conversion of methyl acetate to methyl iodide and an acetate salt. Carbonylation of the methyl iodide in turn affords acetyl iodide, which reacts with acetate salts or acetic acid to give the product. Rhodium iodide and lithium iodide are employed as catalysts. Because acetic anhydride is not stable in water, the conversion is conducted under anhydrous conditions. In contrast, the Monsanto acetic acid process, which also involves a rhodium catalyzed carbonylation of methyl iodide, is at least partially aqueous.
To a decreasing extent, acetic anhydride is also prepared by the reaction of ethenone (ketene) with acetic acid at 45–55 °C and low pressure (0.05–0.2 bar).
H2C= C= O + CH3COOH → (CH3CO)2O (ΔH = ?63 kJ/mol)
Ketene is generated by dehydrating acetic acid at 700–750 °C in the presence of triethyl phosphate as a catalyst or (in Switzerland and the CIS) by the thermolysis of acetone at 600–700 °C in the presence of carbon disulfide as a catalyst.
CH3COOH H2C= C= O + H2O (ΔH = +147 kJ/mol)
CH3COCH3 → H2C= C= O + CH4
The route from acetic acid to acetic anhydride via ketene was developed by Wacker Chemie in 1922, when the demand for acetic anhydride increased due to the production of cellulose acetate.
Due to its low cost, acetic anhydride is purchased, not prepared, for use in research laboratories.

주요 응용

As indicated by its organic chemistry, Ac2O is mainly used for acetylations leading to commercially significant materials. Its largest application is for the conversion of cellulose to cellulose acetate, which is a component of photographic film and other coated materials. Similarly it is used in the production of aspirin (acetylsalicylic acid), which is prepared by the acetylation of salicylic acid.It is also used as a wood preservative via autoclave impregnation to make a longer lasting timber.
In starch industry, acetic anydride is a common acetylation compound, used for the production of modified starches
Because of its use for the synthesis of heroin by the diacetylation of morphine, acetic anhydride is listed as a U.S. DEA List II precursor, and restricted in many other countries.

화학 반응

introduction of acetyl groups to organic substrates . In these conversions, acetic anhydride is viewed as a source of CH3CO+. Alcohols and amines are readily acetylated. For example, the reaction of acetic anhydride with ethanol yields ethyl acetate:
(CH3CO)2O + CH3CH2OH → CH3CO2CH2CH3 + CH3COOH
Often a base such as pyridine is added to function as catalyst. In specialized applications, Lewis acidic scandium salts have also proven effective catalysts.
Aromatic rings are acetylated, usually in the presence of an acid catalyst. Illustrative is the conversion of benzene to aceto phenone:
(CH3CO)2O + C6H6 → CH3COC6H5 + CH3CO2H
Ferrocene can be acetylated as well:
Cp2Fe + (CH3CO)2O → CpFe(C5H4COCH3).

Aroma threshold values

Detection: 490 ppb; Recognition: 1.5 ppm

일반 설명

A clear colorless liquid with a strong odor of vinegar. Flash point 129°F. Corrosive to metals and tissue. Density 9.0 lb /gal. Used to make fibers, plastics, pharmaceuticals, dyes, and explosives.

공기와 물의 반응

Flammable. Reacts violently with water to generate acetic acid . This reaction is heightened by the presence of mineral acids (nitric, perchloric, sulfuric acid, etc.) [Chem. Eng. News 25, 3458].

반응 프로필

Acetic anhydride reacts violently on contact with water, steam, methanol, ethanol, glycerol and boric acid. Reaction with water is particularly dangerous in presence with mineral acids (e.g., nitric, perchloric, chromic, sulfuric acid) [Chem. Eng. News 25, 3458]. Potentially explosive reactions with oxidizing reagents such as barium peroxide, chromium trioxide, chromic acid, hypochlorous acid, nitric acid, perchloric acid, peroxyacetic acid, potassium permanganate, hydrogen peroxide. [Sax, 9th ed., 1996, p. 15]. Reacts violently with metal nitrates used as nitrating agents [Davey W. et al., Chem. & Ind., 1948, p. 814].

건강위험

Liquid is volatile and causes little irritation on uncovered skin. However, causes severe burns when clothing is wet with the chemical or if it enters gloves or shoes. Causes skin and eye burns and irritation of respiratory tract. Nausea and vomiting may develop after exposure.

화학 반응

Reactivity with Water: Reacts slowly with water, but considerable heat is liberated when contacted with spray water; Reactivity with Common Materials: Corrodes iron, steel and other metals; Stability During Transport: Stable; Neutralizing Agents for Acids and Caustics: Dilute with water and use sodium bicarbonate solution to rinse; Polymerization: Not pertinent; Inhibitor of Polymerization: Not pertinent.

Safety Profile

Moderately toxic by inhalation, ingestion, and skin contact. A skin and severe eye irritant. A flammable liquid. A fire and explosion hazard when exposed to heat or flame. Potentially explosive reactions with barium peroxide, boric acid, chromium trioxide, 1,3diphenyltriazene, hydrochloric acid + water, hypochlorous acid, nitric acid, perchloric acid + water, peroxyacetic acid, potassium permanganate, tetrafluoroboric acid, 4toluenesulfonic acid + water, and acetic acid + water. Reactions with ethanol + sodium hydrogen sulfate, and hydrogen peroxide form explosive products. Reactions with ammonium nitrate + hexamethylenetetrammonium acetate + nitric acid form as products the military explosives RDX and HMX. Reacts violently with N-tert-butyl-phthalimic acid + tetrafluoroboric acid, chromic acid, glycerol + phosphoryl chloride, and metal nitrates (e.g., copper or sodium nitrates). Incompatible with 2-aminoethanol, aniline, chlorosulfonic acid, (CrOs + acetic acid), ethylene-diamine, ethyleneimine, glycerol, oleum, HF, permanganates, NaOH, Na2O2, H2SO4, water, N2O2, (glycerol + phosphoryl chloride). When heated to decomposition it emits toxic fumes; can react vigorously with oxidizing materials, wdl react violently on contact with water or steam. Used in production of drugs of abuse. To fight fire, use CO2, dry chemical, water mist, alcohol foam. See also ANHYDRIDES.

Chemical Synthesis

It may be synthesized from diacetyl by partial reduction with zinc and acid or may be derived from fermentation

잠재적 노출

Acetic anhydride is used as an acetylating agent or as a solvent in the manufacture of cellulose acetate, acetanilide, aspirin, synthetic fibers, plastics, explosives, resins, perfumes, and flavorings; and it is used in the textile dyeing industry. It is widely used as a pharmaceutical intermediate and as a pesticide intermediate

환경귀착

Chemical/Physical. Slowly dissolves in water forming acetic acid. In ethanol, ethyl acetate is formed (Windholz et al., 1983).

운송 방법

UN1715 Acetic anhydride, Hazard class: 8; Labels: 8-Corrosive material, 3-Flammable liquid.

Purification Methods

Adequate purification can usually be achieved by fractional distillation through an efficient column. Acetic acid can be removed by prior refluxing with CaC2 or with coarse Mg filings at 80-90o for 5days, or by distillation from a large excess of quinoline (1% AcOH in quinoline) at 75mm pressure. Acetic anhydride can also be dried by standing with Na wire for up to a week, removing the Na and distilling it under vacuum. (Na reacts vigorously with acetic anhydride at 65-70o). Dippy & Evans [J Org Chem 15 451 1950] let the anhydride (500g) stand over P2O5 (50g) for 3hours, then decanted it and stood it with ignited K2CO3 for a further 3hours. The supernatant liquid was distilled and the fraction b 136-138o was further dried with P2O5 for 12hours, followed by shaking with ignited K2CO3, before two further distillations through a five-section Young and Thomas fractionating column. The final material distilled at 137.8-138.0o. It can also be purified by azeotropic distillation with toluene: the azeotrope boils at 100.6o. After removal of the remaining toluene, the anhydride is distilled [sample had a specific conductivity of 5 x 10-9 ohm-1cm -1]. [Beilstein 2 H 96, 2 I 39, 2 II 91, 2 III 134, 2 IV 94.] Rapid procedure: Shake with P2O5, separate, shake with dry K2CO3 and fractionally distil.

비 호환성

Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides, alcohols, chromic acid (violent reaction), amines, strong caustics; finely divided metals. Contact with water forms acetic acid and liberates a large amount of heat. Corrosive to iron, steel and other metals.

폐기물 처리

Dissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber. All federal, state, and local environmental regulations must be observed.

무수초산 준비 용품 및 원자재

원자재

준비 용품


무수초산 공급 업체

글로벌( 0)공급 업체
공급자 전화 팩스 이메일 국가 제품 수 이점

무수초산 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved